@@ -155,15 +155,87 @@ Definition nm f := fine ('N[mu]_p%:E[f]).
155
155
156
156
Lemma ler_Lnorm_add (f g : ty) :
157
157
nm (f \+ g) <= nm f + nm g.
158
+ Proof .
159
+ rewrite /nm.
160
+ have : (-oo < 'N[mu]_p%:E[f])%E by exact: (lt_le_trans ltNy0 (Lnorm_ge0 _ _ _)).
161
+ have : (-oo < 'N[mu]_p%:E[g])%E by exact: (lt_le_trans ltNy0 (Lnorm_ge0 _ _ _)).
162
+ rewrite !ltNye_eq => /orP[f_fin /orP[g_fin|/eqP foo]|/eqP goo].
163
+ - rewrite -fineD ?fine_le//.
164
+ - admit.
165
+ - by rewrite fin_numD f_fin g_fin//.
166
+ rewrite minkowski//. admit. admit. admit.
167
+ - rewrite foo/= add0r.
168
+ have : ('N[mu]_p%:E[f] <= 'N[mu]_p%:E[(f \+ g)])%E.
169
+ rewrite unlock /Lnorm.
170
+ rewrite {1}(@ifF _ (p == 0)).
171
+ rewrite {1}(@ifF _ (p == 0)).
172
+ rewrite gt0_ler_poweR.
173
+ - by [].
174
+ - admit.
175
+ - admit.
176
+ - admit.
177
+ rewrite ge0_le_integral//.
178
+ - move => x _. rewrite lee_fin powR_ge0//.
179
+ - admit.
180
+ - move => x _. rewrite lee_fin powR_ge0//.
181
+ - admit.
182
+ - move => x _. rewrite lee_fin gt0_ler_powR//. admit. (* rewrite normr_le. *)
183
+
158
184
Admitted .
159
185
160
- Lemma Lnorm_eq0 f : nm f = 0 -> f = 0.
186
+ Lemma natmulfctE (U : pointedType) (K : ringType) (f : U -> K) n :
187
+ f *+ n = (fun x => f x *+ n).
188
+ Proof . by elim: n => [//|n h]; rewrite funeqE=> ?; rewrite !mulrSr h. Qed .
189
+
190
+
191
+ Lemma Lnorm_eq0 f : nm f = 0 -> {ae mu, f =1 0}.
192
+ rewrite /nm => /eqP.
193
+ rewrite fine_eq0; last first. admit.
194
+ move/eqP/Lnorm_eq0_eq0.
195
+ (* ale: I don't think it holds almost everywhere equal does not mean equal *
196
+ rewrite unlock /Lnorm ifF.
197
+ rewrite poweR_eq0.
198
+ rewrite integral_abs_eq0. *)
161
199
Admitted .
162
200
163
201
Lemma Lnorm_natmul f k : nm (f *+ k) = nm f *+ k.
202
+ rewrite /nm unlock /Lnorm.
203
+ case: (ifP (p == 0)).
204
+ admit.
205
+
206
+ move => p0.
207
+ under eq_integral => x _.
208
+ rewrite -mulr_natr/=.
209
+ rewrite fctE (_ : k%:R _ = k%:R); last by rewrite natmulfctE.
210
+ rewrite normrM powRM//=.
211
+ rewrite mulrC EFinM.
212
+ over.
213
+ rewrite /=.
214
+ rewrite integralZl//; last first. admit.
215
+ rewrite poweRM; last 2 first.
216
+ - by rewrite lee_fin powR_ge0.
217
+ - by rewrite integral_ge0// => x _; rewrite lee_fin powR_ge0.
218
+
219
+ rewrite poweR_EFin -powRrM mulfV; last admit.
220
+ rewrite powRr1//.
221
+ rewrite fineM//; last admit.
222
+ rewrite mulrC.
223
+
164
224
Admitted .
165
225
166
226
Lemma LnormN f : nm (-f) = nm f.
227
+ rewrite /nm.
228
+ congr (fine _).
229
+ rewrite unlock /Lnorm.
230
+ case: ifP.
231
+ move=> p0.
232
+ admit.
233
+
234
+ move=> p0.
235
+ congr (_ `^ _)%E.
236
+ apply eq_integral => x _.
237
+ congr ((_ `^ _)%:E).
238
+ by rewrite normrN.
167
239
Admitted .
168
240
169
241
(*
0 commit comments