|
| 1 | +""" |
| 2 | +Derived module from dmd.py for Physics-informed DMD. |
| 3 | +
|
| 4 | +References: |
| 5 | +- Peter J. Baddoo, Benjamin Herrmann, Beverley J. McKeon, J. Nathan Kutz, and |
| 6 | +Steven L. Brunton. Physics-informed dynamic mode decomposition (pidmd). 2021. |
| 7 | +arXiv:2112.04307. |
| 8 | +""" |
| 9 | +import numpy as np |
| 10 | + |
| 11 | +from .dmd import DMD |
| 12 | +from .dmdoperator import DMDOperator |
| 13 | +from .utils import compute_svd |
| 14 | +from .pidmd_utils import ( |
| 15 | + compute_unitary, |
| 16 | + compute_uppertriangular, |
| 17 | + compute_diagonal, |
| 18 | + compute_symmetric, |
| 19 | + compute_toeplitz, |
| 20 | + compute_circulant, |
| 21 | + compute_symtridiagonal, |
| 22 | + compute_BCCB, |
| 23 | + compute_BC, |
| 24 | +) |
| 25 | + |
| 26 | +class PiDMDOperator(DMDOperator): |
| 27 | + """ |
| 28 | + DMD operator for Physics-informed DMD. |
| 29 | +
|
| 30 | + :param manifold: the matrix manifold for the full DMD operator A. |
| 31 | + :type manifold: str |
| 32 | + :param manifold_opt: option used to specify certain manifolds. If manifold |
| 33 | + is "diagonal", manifold_opt may be used to specify the width of the |
| 34 | + diagonal of A. If manifold starts with "BC", manifold_opt must be a |
| 35 | + 2D tuple that specifies the desired dimensions of the blocks of A. |
| 36 | + :type manifold_opt: int, tuple(int,int), or numpy.ndarray |
| 37 | + :param compute_A: Flag that determines whether or not to compute the full |
| 38 | + Koopman operator A. |
| 39 | + :type compute_A: bool |
| 40 | + :param svd_rank: the rank for the truncation; If 0, the method computes the |
| 41 | + optimal rank and uses it for truncation; if positive integer, the |
| 42 | + method uses the argument for the truncation; if float between 0 and 1, |
| 43 | + the rank is the number of the biggest singular values that are needed |
| 44 | + to reach the 'energy' specified by `svd_rank`; if -1, the method does |
| 45 | + not compute truncation. |
| 46 | + :type svd_rank: int or float |
| 47 | + """ |
| 48 | + def __init__( |
| 49 | + self, |
| 50 | + manifold, |
| 51 | + manifold_opt, |
| 52 | + compute_A, |
| 53 | + svd_rank, |
| 54 | + ): |
| 55 | + self._manifold = manifold |
| 56 | + self._manifold_opt = manifold_opt |
| 57 | + self._compute_A = compute_A |
| 58 | + self._svd_rank = svd_rank |
| 59 | + |
| 60 | + self._A = None |
| 61 | + self._Atilde = None |
| 62 | + self._eigenvalues = None |
| 63 | + self._eigenvectors = None |
| 64 | + self._modes = None |
| 65 | + |
| 66 | + |
| 67 | + @property |
| 68 | + def A(self): |
| 69 | + """ |
| 70 | + Get the full Koopman operator A. |
| 71 | +
|
| 72 | + :return: the full Koopman operator A. |
| 73 | + :rtype: numpy.ndarray |
| 74 | + """ |
| 75 | + if not self._compute_A: |
| 76 | + msg = "A not computed during fit. " \ |
| 77 | + "Set parameter compute_A = True to compute A." |
| 78 | + raise ValueError(msg) |
| 79 | + if self._A is None: |
| 80 | + raise ValueError("You need to call fit before") |
| 81 | + return self._A |
| 82 | + |
| 83 | + |
| 84 | + def _check_compute_A(self): |
| 85 | + """ |
| 86 | + Helper method that checks that compute_A is True. |
| 87 | + Throws an error if compute_A is False. |
| 88 | + """ |
| 89 | + if not self._compute_A: |
| 90 | + raise ValueError( |
| 91 | + "A must be computed for the chosen manifold." |
| 92 | + "Set compute_A = True to compute A." |
| 93 | + ) |
| 94 | + |
| 95 | + |
| 96 | + def _compute_procrustes(self, X, Y): |
| 97 | + """ |
| 98 | + Private method that computes the best-fit linear operator A in the |
| 99 | + relationship Y = AX such that A is restricted to the family of matrices |
| 100 | + defined by the given manifold (and manifold option if applicable). |
| 101 | + Computes and returns a dictionary that contains either... |
| 102 | + (1) the reduced operator "atilde", |
| 103 | + (2) the full operator "A", or |
| 104 | + (3) the "eigenvalues" and eigenvectors of A, referred to as "modes", |
| 105 | + depending on the chosen manifold and the compute_A parameter. |
| 106 | + """ |
| 107 | + if self._manifold == "unitary": |
| 108 | + result_dict = compute_unitary(X, Y, self._svd_rank) |
| 109 | + elif self._manifold == "uppertriangular": |
| 110 | + self._check_compute_A() |
| 111 | + result_dict = compute_uppertriangular(X, Y) |
| 112 | + elif self._manifold == "lowertriangular": |
| 113 | + self._check_compute_A() |
| 114 | + A_rot = compute_uppertriangular(np.flipud(X), np.flipud(Y))["A"] |
| 115 | + result_dict = {"A": np.rot90(A_rot, 2)} |
| 116 | + elif self._manifold == "diagonal": |
| 117 | + result_dict = compute_diagonal(X, Y, |
| 118 | + self._svd_rank, |
| 119 | + self._manifold_opt, |
| 120 | + self._compute_A) |
| 121 | + elif self._manifold == "symmetric": |
| 122 | + result_dict = compute_symmetric(X, Y, self._svd_rank) |
| 123 | + elif self._manifold == "skewsymmetric": |
| 124 | + result_dict = compute_symmetric(X, Y, self._svd_rank, |
| 125 | + skew_symmetric=True) |
| 126 | + elif self._manifold == "toeplitz": |
| 127 | + self._check_compute_A() |
| 128 | + result_dict = compute_toeplitz(X, Y) |
| 129 | + elif self._manifold == "hankel": |
| 130 | + self._check_compute_A() |
| 131 | + result_dict = compute_toeplitz(X, Y, flipped=True) |
| 132 | + elif self._manifold in [ |
| 133 | + "circulant", |
| 134 | + "circulant_unitary", |
| 135 | + "circulant_symmetric", |
| 136 | + "circulant_skewsymmetric" |
| 137 | + ]: |
| 138 | + circulant_opt = self._manifold.replace("circulant_", "") |
| 139 | + result_dict = compute_circulant(X, Y, |
| 140 | + circulant_opt, |
| 141 | + self._svd_rank, |
| 142 | + self._compute_A) |
| 143 | + elif self._manifold == "symmetric_tridiagonal": |
| 144 | + result_dict = compute_symtridiagonal(X, Y, |
| 145 | + self._svd_rank, |
| 146 | + self._compute_A) |
| 147 | + elif self._manifold in [ |
| 148 | + "BC", |
| 149 | + "BCTB", |
| 150 | + "BCCB", |
| 151 | + "BCCBunitary", |
| 152 | + "BCCBsymmetric", |
| 153 | + "BCCBskewsymmetric", |
| 154 | + ]: |
| 155 | + # Specify the shape of the blocks in the output matrix A. |
| 156 | + self._check_compute_A() |
| 157 | + if self._manifold_opt is None: |
| 158 | + raise ValueError("manifold_opt must be specified.") |
| 159 | + if (not isinstance(self._manifold_opt, tuple) |
| 160 | + or len(self._manifold_opt) != 2): |
| 161 | + raise ValueError("manifold_opt is not in an allowable format.") |
| 162 | + block_shape = np.array(self._manifold_opt) |
| 163 | + |
| 164 | + if self._manifold.startswith("BCCB"): |
| 165 | + bccb_opt = self._manifold.replace("BCCB", "") |
| 166 | + result_dict = compute_BCCB(X, Y, |
| 167 | + block_shape, |
| 168 | + bccb_opt, |
| 169 | + self._svd_rank) |
| 170 | + elif self._manifold == "BC": |
| 171 | + result_dict = compute_BC(X, Y, block_shape) |
| 172 | + else: |
| 173 | + result_dict = compute_BC(X, Y, block_shape, |
| 174 | + tridiagonal_blocks=True) |
| 175 | + else: |
| 176 | + raise ValueError("The selected manifold is not implemented.") |
| 177 | + |
| 178 | + return result_dict |
| 179 | + |
| 180 | + |
| 181 | + def compute_operator(self, X, Y): |
| 182 | + """ |
| 183 | + Compute and store the low-rank operator and the full operator A. |
| 184 | +
|
| 185 | + :param X: matrix containing the snapshots x0,..x{n-1} by column. |
| 186 | + :type X: numpy.ndarray |
| 187 | + :param Y: matrix containing the snapshots x1,..x{n} by column. |
| 188 | + :type Y: numpy.ndarray |
| 189 | + :return: the (truncated) left-singular vectors matrix, the (truncated) |
| 190 | + singular values array, and the (truncated) right-singular vectors |
| 191 | + matrix of X. |
| 192 | + :rtype: numpy.ndarray, numpy.ndarray, numpy.ndarray |
| 193 | + """ |
| 194 | + U, s, V = compute_svd(X, self._svd_rank) |
| 195 | + |
| 196 | + # Compute the corresponding Procrustes problem. |
| 197 | + result_dict = self._compute_procrustes(X, Y) |
| 198 | + |
| 199 | + # Case 1: atilde was computed. |
| 200 | + if "atilde" in result_dict.keys(): |
| 201 | + self._Atilde = result_dict["atilde"] |
| 202 | + self._eigenvalues, self._eigenvectors = np.linalg.eig(self._Atilde) |
| 203 | + self._modes = U.dot(self._eigenvectors) |
| 204 | + if self._compute_A: |
| 205 | + self._A = np.linalg.multi_dot([self._modes, |
| 206 | + np.diag(self._eigenvalues), |
| 207 | + np.linalg.pinv(self._modes)]) |
| 208 | + else: # Cases 2 and 3. |
| 209 | + # Case 2: A was computed. |
| 210 | + if "A" in result_dict.keys(): |
| 211 | + self._A = result_dict["A"] |
| 212 | + self._eigenvalues, self._modes = np.linalg.eig(self._A) |
| 213 | + else: |
| 214 | + # Case 3: eigenvalues and modes were computed. |
| 215 | + self._eigenvalues = result_dict["eigenvalues"] |
| 216 | + self._modes = result_dict["modes"] |
| 217 | + self._eigenvectors = U.conj().T.dot(self._modes) |
| 218 | + self._Atilde = np.linalg.multi_dot( |
| 219 | + [self._eigenvectors, |
| 220 | + np.diag(self._eigenvalues), |
| 221 | + np.linalg.pinv(self._eigenvectors)] |
| 222 | + ) |
| 223 | + |
| 224 | + return U, s, V |
| 225 | + |
| 226 | + |
| 227 | +class PiDMD(DMD): |
| 228 | + """ |
| 229 | + Physics-informed Dynamic Mode Decomposition. |
| 230 | +
|
| 231 | + :param manifold: the matrix manifold to restrict the full operator A to. |
| 232 | + The following matrix manifolds are permissible: |
| 233 | + - "unitary" |
| 234 | + - "uppertriangular" |
| 235 | + - "lowertriangular" |
| 236 | + - "diagonal" |
| 237 | + - "symmetric", |
| 238 | + - "skewsymmetric" |
| 239 | + - "toeplitz" |
| 240 | + - "hankel" |
| 241 | + - "circulant" |
| 242 | + - "circulant_unitary" |
| 243 | + - "circulant_symmetric" |
| 244 | + - "circulant_skewsymmetric" |
| 245 | + - "symmetric_tridiagonal" |
| 246 | + - "BC" (block circulant) |
| 247 | + - "BCTB" (BC with tridiagonal blocks) |
| 248 | + - "BCCB" (BC with circulant blocks) |
| 249 | + - "BCCBunitary" (BCCB and unitary) |
| 250 | + - "BCCBsymmetric" (BCCB and symmetric) |
| 251 | + - "BCCBskewsymmetric" (BCCB and skewsymmetric) |
| 252 | + :type manifold: str |
| 253 | + :param manifold_opt: option used to specify certain manifolds. |
| 254 | + If manifold is "diagonal", manifold_opt may be used to specify the |
| 255 | + width of the diagonal of A. If manifold_opt is an integer k, A is |
| 256 | + banded, with a lower and upper bandwidth of k-1. If manifold_opt is |
| 257 | + a tuple containing two integers k1 and k2, A is banded with a lower |
| 258 | + bandwidth of k1-1 and an upper bandwidth of k2-1. Finally, if |
| 259 | + manifold_opt is a numpy array of size (len(X), 2), the entries of |
| 260 | + manifold_opt are used to explicitly define the the upper and lower |
| 261 | + bounds of the indices of the non-zero elements of A. |
| 262 | + If manifold starts with "BC", manifold_opt must be a 2D tuple that |
| 263 | + specifies the desired dimensions of the blocks of A. |
| 264 | + Note that all other manifolds do not use manifold_opt. |
| 265 | + :type manifold_opt: int, tuple(int,int), or numpy.ndarray |
| 266 | + :param compute_A: Flag that determines whether or not to compute the full |
| 267 | + Koopman operator A. |
| 268 | + :type compute_A: bool |
| 269 | + :param svd_rank: the rank for the truncation; If 0, the method computes the |
| 270 | + optimal rank and uses it for truncation; if positive integer, the |
| 271 | + method uses the argument for the truncation; if float between 0 and 1, |
| 272 | + the rank is the number of the biggest singular values that are needed |
| 273 | + to reach the 'energy' specified by `svd_rank`; if -1, the method does |
| 274 | + not compute truncation. Default is -1, meaning no truncation. |
| 275 | + :type svd_rank: int or float |
| 276 | + :param tlsq_rank: rank truncation computing Total Least Square. Default is |
| 277 | + 0, meaning no truncation. |
| 278 | + :type tlsq_rank: int |
| 279 | + :param opt: If True, amplitudes are computed like in optimized DMD (see |
| 280 | + :func:`~dmdbase.DMDBase._compute_amplitudes` for reference). If |
| 281 | + False, amplitudes are computed following the standard algorithm. If |
| 282 | + `opt` is an integer, it is used as the (temporal) index of the snapshot |
| 283 | + used to compute DMD modes amplitudes (following the standard |
| 284 | + algorithm). |
| 285 | + The reconstruction will generally be better in time instants near the |
| 286 | + chosen snapshot; however increasing `opt` may lead to wrong results |
| 287 | + when the system presents small eigenvalues. For this reason a manual |
| 288 | + selection of the number of eigenvalues considered for the analyisis may |
| 289 | + be needed (check `svd_rank`). Also setting `svd_rank` to a value |
| 290 | + between 0 and 1 may give better results. Default is False. |
| 291 | + :type opt: bool or int |
| 292 | + """ |
| 293 | + def __init__( |
| 294 | + self, |
| 295 | + manifold, |
| 296 | + manifold_opt=None, |
| 297 | + compute_A=False, |
| 298 | + svd_rank=-1, |
| 299 | + tlsq_rank=0, |
| 300 | + opt=False, |
| 301 | + ): |
| 302 | + super().__init__( |
| 303 | + svd_rank=svd_rank, |
| 304 | + tlsq_rank=tlsq_rank, |
| 305 | + opt=opt, |
| 306 | + ) |
| 307 | + self._Atilde = PiDMDOperator( |
| 308 | + manifold=manifold, |
| 309 | + manifold_opt=manifold_opt, |
| 310 | + compute_A=compute_A, |
| 311 | + svd_rank=svd_rank, |
| 312 | + ) |
| 313 | + |
| 314 | + @property |
| 315 | + def A(self): |
| 316 | + """ |
| 317 | + Get the full Koopman operator A. |
| 318 | +
|
| 319 | + :return: the full Koopman operator A. |
| 320 | + :rtype: numpy.ndarray |
| 321 | + """ |
| 322 | + return self.operator.A |
0 commit comments