-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraining.py
141 lines (105 loc) · 4.8 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import nltk
from nltk.stem.lancaster import LancasterStemmer
import json
import datetime
import numpy as np
import time
from math_util import sigmoid, sigmoid_output_to_derivative
stemmer = LancasterStemmer()
training_file = "data/training.json"
with open(training_file) as data_file:
training_data = json.load(data_file)
words = []
classes = []
documents = []
ignore_words = ['?', '!']
for pattern in training_data:
w = nltk.word_tokenize(pattern['sentence'])
words.extend(w)
documents.append((w, pattern['class']))
if pattern['class'] not in classes:
classes.append(pattern['class'])
words = [stemmer.stem(w.lower()) for w in words if w not in ignore_words]
words = list(set(words))
classes = list(set(classes))
training = []
output = []
output_empty = [0] * len(classes)
for doc in documents:
bag = []
pattern_words = doc[0]
pattern_words = [stemmer.stem(w.lower()) for w in pattern_words]
for w in words:
bag.append(1) if w in pattern_words else bag.append(0)
training.append(bag)
output_row = list(output_empty)
output_row[classes.index(doc[1])] = 1
output.append(output_row)
# Train model and store synapses
def train(X, y, hidden_neurons=10, alpha=1, epochs=50000, dropout=False, dropout_percent=0.5):
print ("Training with %s neurons, alpha:%s, dropout:%s %s" % (
hidden_neurons, str(alpha), dropout, dropout_percent if dropout else ''))
print ("Input matrix: %sx%s Output matrix: %sx%s" % (len(X), len(X[0]), 1, len(classes)))
np.random.seed(1)
last_mean_error = 1
# randomly initialize our weights with mean 0
synapse_0 = 2 * np.random.random((len(X[0]), hidden_neurons)) - 1
synapse_1 = 2 * np.random.random((hidden_neurons, len(classes))) - 1
prev_synapse_0_weight_update = np.zeros_like(synapse_0)
prev_synapse_1_weight_update = np.zeros_like(synapse_1)
synapse_0_direction_count = np.zeros_like(synapse_0)
synapse_1_direction_count = np.zeros_like(synapse_1)
for j in iter(range(epochs + 1)):
# Feed forward through layers 0, 1, and 2
layer_0 = X
layer_1 = sigmoid(np.dot(layer_0, synapse_0))
if dropout:
layer_1 *= np.random.binomial([np.ones((len(X), hidden_neurons))], 1 - dropout_percent)[0] * (
1.0 / (1 - dropout_percent))
layer_2 = sigmoid(np.dot(layer_1, synapse_1))
# how much did we miss the target value?
layer_2_error = y - layer_2
if (j % 10000) == 0 and j > 5000:
# if this 10k iteration's error is greater than the last iteration, break out
if np.mean(np.abs(layer_2_error)) < last_mean_error:
print ("delta after " + str(j) + " iterations:" + str(np.mean(np.abs(layer_2_error))))
last_mean_error = np.mean(np.abs(layer_2_error))
else:
print ("break:", np.mean(np.abs(layer_2_error)), ">", last_mean_error)
break
# in what direction is the target value?
# were we really sure? if so, don't change too much.
layer_2_delta = layer_2_error * sigmoid_output_to_derivative(layer_2)
# how much did each l1 value contribute to the l2 error (according to the weights)?
layer_1_error = layer_2_delta.dot(synapse_1.T)
# in what direction is the target l1?
# were we really sure? if so, don't change too much.
layer_1_delta = layer_1_error * sigmoid_output_to_derivative(layer_1)
synapse_1_weight_update = (layer_1.T.dot(layer_2_delta))
synapse_0_weight_update = (layer_0.T.dot(layer_1_delta))
if j > 0:
synapse_0_direction_count += np.abs(
((synapse_0_weight_update > 0) + 0) - ((prev_synapse_0_weight_update > 0) + 0))
synapse_1_direction_count += np.abs(
((synapse_1_weight_update > 0) + 0) - ((prev_synapse_1_weight_update > 0) + 0))
synapse_1 += alpha * synapse_1_weight_update
synapse_0 += alpha * synapse_0_weight_update
prev_synapse_0_weight_update = synapse_0_weight_update
prev_synapse_1_weight_update = synapse_1_weight_update
now = datetime.datetime.now()
# persist synapses
synapse = {'synapse0': synapse_0.tolist(), 'synapse1': synapse_1.tolist(),
'datetime': now.strftime("%Y-%m-%d %H:%M"),
'words': words,
'classes': classes
}
synapse_file = "model/synapses.json"
with open(synapse_file, 'w') as outfile:
json.dump(synapse, outfile, indent=4, sort_keys=True)
print ("saved synapses to:", synapse_file)
X = np.array(training)
y = np.array(output)
start_time = time.time()
train(X, y, hidden_neurons=20, alpha=0.1, epochs=150000, dropout=False, dropout_percent=0.2)
elapsed_time = time.time() - start_time
print ("processing time:", elapsed_time, "seconds")