Skip to content

Add qwen3_30b_a3b.yaml config for test_policy_update.py (#682) #61

Add qwen3_30b_a3b.yaml config for test_policy_update.py (#682)

Add qwen3_30b_a3b.yaml config for test_policy_update.py (#682) #61

name: Integration Tests (8 card)
on:
push:
branches: [ main ]
workflow_dispatch:
concurrency:
group: integration-test-${{ github.workflow }}-${{ github.ref == 'refs/heads/main' && github.run_number || github.ref }}
cancel-in-progress: true
permissions:
id-token: write
contents: read
defaults:
run:
shell: bash -l -eo pipefail {0}
jobs:
integration_test:
if: github.repository_owner == 'meta-pytorch'
runs-on: linux.g4dn.metal.nvidia.gpu
steps:
- name: Check out repo
uses: actions/checkout@v4
- name: Setup conda env
uses: conda-incubator/setup-miniconda@v2
with:
auto-update-conda: true
miniconda-version: "latest"
activate-environment: test
python-version: '3.12'
- name: Update pip
run: python -m pip install --upgrade pip
- name: Install CUDA toolkit
run: |
# flashinfer (used by vLLM 0.13.0) requires nvcc for JIT compilation
# Add NVIDIA CUDA repository for Amazon Linux / RHEL
sudo dnf config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel9/x86_64/cuda-rhel9.repo
sudo dnf install -y cuda-toolkit-12-8
echo "CUDA_HOME=/usr/local/cuda-12.8" >> $GITHUB_ENV
echo "/usr/local/cuda-12.8/bin" >> $GITHUB_PATH
- name: Install torchforge
run: pip install uv && uv pip install . && uv pip install .[dev]
- name: Run weight sync integration test
run: pytest -s tests/integration_tests/test_policy_update.py::TestWeightSync::test_sanity_check --config tests/integration_tests/fixtures/qwen3_1_7b_tp.yaml