Skip to content

Latest commit

 

History

History
275 lines (204 loc) · 10.1 KB

README.md

File metadata and controls

275 lines (204 loc) · 10.1 KB

PyPI Version Build Status Code style: black pre-commit

swissparlpy

This module provides easy access to the data of the OData webservice of the Swiss parliament.

Table of Contents

Installation

swissparlpy is available on PyPI, so to install it simply use:

$ pip install swissparlpy

Usage

See the examples directory for more scripts.

Get tables and their variables

>>> import swissparlpy as spp
>>> spp.get_tables()[:5] # get first 5 tables
['MemberParty', 'Party', 'Person', 'PersonAddress', 'PersonCommunication']
>>> spp.get_variables('Party') # get variables of table `Party`
['ID', 'Language', 'PartyNumber', 'PartyName', 'StartDate', 'EndDate', 'Modified', 'PartyAbbreviation']

Get data of a table

>>> import swissparlpy as spp
>>> data = spp.get_data('Canton', Language='DE')
>>> data
<swissparlpy.client.SwissParlResponse object at 0x7f8e38baa610>
>>> data.count
26
>>> data[0]
{'ID': 2, 'Language': 'DE', 'CantonNumber': 2, 'CantonName': 'Bern', 'CantonAbbreviation': 'BE'}
>>> [d['CantonName'] for d in data]
['Bern', 'Neuenburg', 'Genf', 'Wallis', 'Uri', 'Schaffhausen', 'Jura', 'Basel-Stadt', 'St. Gallen', 'Obwalden', 'Appenzell A.-Rh.', 'Solothurn', 'Waadt', 'Zug', 'Aargau', 'Basel-Landschaft', 'Luzern', 'Thurgau', 'Freiburg', 'Appenzell I.-Rh.', 'Schwyz', 'Graubünden', 'Glarus', 'Tessin', 'Zürich', 'Nidwalden']

The return value of get_data is iterable, so you can easily loop over it. Or you can use indices to access elements, e.g. data[1] to get the second element, or data[-1] to get the last one.

Even slicing is supported, so you can do things like only iterate over the first 5 elements using

for rec in data[:5]:
   print(rec)

Use together with pandas

To create a pandas DataFrame from get_data simply pass the return value to the constructor:

>>> import swissparlpy as spp
>>> import pandas as pd
>>> parties = spp.get_data('Party', Language='DE')
>>> parties_df = pd.DataFrame(parties)
>>> parties_df
      ID Language  PartyNumber  ...                   EndDate                         Modified PartyAbbreviation
0     12       DE           12  ... 2000-01-01 00:00:00+00:00 2010-12-26 13:05:26.430000+00:00                SP
1     13       DE           13  ... 2000-01-01 00:00:00+00:00 2010-12-26 13:05:26.430000+00:00               SVP
2     14       DE           14  ... 2000-01-01 00:00:00+00:00 2010-12-26 13:05:26.430000+00:00               CVP
3     15       DE           15  ... 2000-01-01 00:00:00+00:00 2010-12-26 13:05:26.430000+00:00      FDP-Liberale
4     16       DE           16  ... 2000-01-01 00:00:00+00:00 2010-12-26 13:05:26.430000+00:00               LDP
..   ...      ...          ...  ...                       ...                              ...               ...
78  1582       DE         1582  ... 2000-01-01 00:00:00+00:00 2015-12-03 08:48:38.250000+00:00             BastA
79  1583       DE         1583  ... 2000-01-01 00:00:00+00:00 2019-03-07 17:24:15.013000+00:00              CVPO
80  1584       DE         1584  ... 2000-01-01 00:00:00+00:00 2019-11-08 17:28:43.947000+00:00                Al
81  1585       DE         1585  ... 2000-01-01 00:00:00+00:00 2019-11-08 17:41:39.513000+00:00               EàG
82  1586       DE         1586  ... 2000-01-01 00:00:00+00:00 2021-08-12 07:59:22.627000+00:00               M-E

[83 rows x 8 columns]

Substrings

If you want to query for substrings there are two main operators to use:

__startswith:

>>> import swissparlpy as spp
>>> persons = spp.get_data("Person", Language="DE", LastName__startswith='Bal')
>>> persons.count
12

__contains

>>> import swissparlpy as spp
>>> co2_business = spp.get_data("Business", Title__contains="CO2", Language = "DE")
>>> co2_business.count
265

You can suffix any field with those operators to query the data.

Date ranges

To query for date ranges you can use the operators...

  • __gt (greater than)
  • __gte (greater than or equal)
  • __lt (less than)
  • __lte (less than or equal)

...in combination with a datetime object.

>>> import swissparlpy as spp
>>> from datetime import datetime
>>> business = spp.get_data(
...     "Business",
...     Language="DE",
...     SubmissionDate__gt=datetime.fromisoformat('2019-09-30'),
...     SubmissionDate__lte=datetime.fromisoformat('2019-10-31')
... )
>>> business.count
22

Advanced filter

Text query

It's possible to write text queries using operators like eq (equals), ne (not equals), lt/lte (less than/less than or equals), gt / gte (greater than/greater than or equals), startswith() and contains:

import swissparlpy as spp
import pandas as pd
   
persons = spp.get_data(
   "Person",
   filter="(startswith(FirstName, 'Ste') or LastName eq 'Seiler') and Language eq 'DE'"
)

df = pd.DataFrame(persons)
print(df[['FirstName', 'LastName']])

Callable Filter

You can provide a callable as a filter which allows for more advanced filters.

swissparlpy.filter provides or_ and and_.

import swissparlpy as spp
import pandas as pd

# filter by FirstName = 'Stefan' OR LastName == 'Seiler'
def filter_by_name(ent):
   return spp.filter.or_(
      ent.FirstName == 'Stefan',
      ent.LastName == 'Seiler'
   )
   
persons = spp.get_data("Person", filter=filter_by_name, Language='DE')

df = pd.DataFrame(persons)
print(df[['FirstName', 'LastName']])

Large queries

Large queries (especially the tables Voting and Transcripts) may result in server-side errors (500 Internal Server Error). In these cases it is recommended to download the data in smaller batches, save the individual blocks and combine them after the download.

This is an example script to download all votes of the legislative period 50, session by session, and combine them afterwards in one DataFrame:

import swissparlpy as spp
import pandas as pd
import os

__location__ = os.path.realpath(os.getcwd())
path = os.path.join(__location__, "voting50")

# download votes of one session and save as pickled DataFrame
def save_votes_of_session(id, path):
    if not os.path.exists(path):
        os.mkdir(path)
    data = spp.get_data("Voting", Language="DE", IdSession=id)
    print(f"{data.count} rows loaded.")
    df = pd.DataFrame(data)
    pickle_path = os.path.join(path, f'{id}.pks')
    df.to_pickle(pickle_path)
    print(f"Saved pickle at {pickle_path}")


# get all session of the 50 legislative period
sessions50 = spp.get_data("Session", Language="DE", LegislativePeriodNumber=50)
sessions50.count

for session in sessions50:
    print(f"Loading session {session['ID']}")
    save_votes_of_session(session['ID'], path)

# Combine to one dataframe
df_voting50 = pd.concat([pd.read_pickle(os.path.join(path, x)) for x in os.listdir(path)])

Documentation

The referencing table has been created and is available here. It contains the dependency diagram between all of the tables as well, some exhaustive descriptions as well as the code needed to generate such interactive documentation. The documentation can indeed be recreated using dbdiagram.io.

Below is a first look of what the dependencies are between the tables contained in the API:

db diagram of swiss parliament API

Similar libraries for other languages

Credits

This library is inspired by the R package swissparl of David Zumbach. Ralph Straumann initial asked about a Python version of swissparl on Twitter, which led to this project.

Development

To develop on this project, install flit:

pip install flit
flit install -s

Release

To create a new release, follow these steps (please respect Semantic Versioning):

  1. Adapt the version number in swissparlpy/__init__.py
  2. Update the CHANGELOG with the version
  3. Create a pull request to merge develop into main (make sure the tests pass!)
  4. Create a new release/tag on GitHub (on the main branch)
  5. The publication on PyPI happens via GitHub Actions on every tagged commit