|
| 1 | +import ModelClient from "@azure-rest/ai-inference"; |
| 2 | +import { isUnexpected } from "@azure-rest/ai-inference"; |
| 3 | +import { AzureKeyCredential } from "@azure/core-auth"; |
| 4 | +import { brotliDecompress } from "zlib"; |
| 5 | + |
| 6 | +const token = process.env["GITHUB_TOKEN"]; |
| 7 | +const endpoint = "https://models.inference.ai.azure.com"; |
| 8 | + |
| 9 | +/* By using the Azure AI Inference SDK, you can easily experiment with different models |
| 10 | + by modifying the value of `modelName` in the code below. For this code sample |
| 11 | + you need an embedding model. The following embedding models are |
| 12 | + available in the GitHub Models service: |
| 13 | +
|
| 14 | + Cohere: Cohere-embed-v3-english, Cohere-embed-v3-multilingual |
| 15 | + Azure OpenAI: text-embedding-3-small, text-embedding-3-large */ |
| 16 | +const modelName = "text-embedding-3-small"; |
| 17 | + |
| 18 | +function cosineSimilarity(vector1, vector2) { |
| 19 | + if (vector1.length !== vector2.length) { |
| 20 | + throw new Error("Vector dimensions must match for cosine similarity calculation."); |
| 21 | + } |
| 22 | + |
| 23 | + const dotProduct = vector1.reduce((acc, val, index) => acc + val * vector2[index], 0); |
| 24 | + const magnitude1 = Math.sqrt(vector1.reduce((acc, val) => acc + val ** 2, 0)); |
| 25 | + const magnitude2 = Math.sqrt(vector2.reduce((acc, val) => acc + val ** 2, 0)); |
| 26 | + |
| 27 | + if (magnitude1 === 0 || magnitude2 === 0) { |
| 28 | + throw new Error("Magnitude of a vector must be non-zero for cosine similarity calculation."); |
| 29 | + } |
| 30 | + |
| 31 | + return dotProduct / (magnitude1 * magnitude2); |
| 32 | +} |
| 33 | + |
| 34 | + |
| 35 | + |
| 36 | +export async function main() { |
| 37 | + let carEmbedding, vehicleEmbedding, birdEmbedding |
| 38 | + |
| 39 | + const client = new ModelClient(endpoint, new AzureKeyCredential(token)); |
| 40 | + |
| 41 | + const response = await client.path("/embeddings").post({ |
| 42 | + body: { |
| 43 | + input: ["Car", "Vehicle", "Bird"], |
| 44 | + model: modelName |
| 45 | + } |
| 46 | + }); |
| 47 | + |
| 48 | + if (isUnexpected(response)) { |
| 49 | + throw response.body.error; |
| 50 | + } |
| 51 | + |
| 52 | + for (const item of response.body.data) { |
| 53 | + const { embedding, index } = item; // Destructure item for cleaner code |
| 54 | + const length = embedding.length; |
| 55 | + |
| 56 | + switch (index) { |
| 57 | + case 0: |
| 58 | + carEmbedding = embedding; |
| 59 | + break; |
| 60 | + case 1: |
| 61 | + vehicleEmbedding = embedding; |
| 62 | + break; |
| 63 | + case 2: |
| 64 | + birdEmbedding = embedding; |
| 65 | + break; |
| 66 | + } |
| 67 | + |
| 68 | + console.log( |
| 69 | + `data[${item.index}]: length=${length}, ` + |
| 70 | + `[${item.embedding[0]}, ${item.embedding[1]}, ` + |
| 71 | + `..., ${item.embedding[length - 2]}, ${item.embedding[length - 1]}]`); |
| 72 | + |
| 73 | + |
| 74 | + } |
| 75 | + |
| 76 | + console.log(response.body.usage); |
| 77 | + console.log(carEmbedding) |
| 78 | + const scoreCarWithVehicle = cosineSimilarity(carEmbedding, vehicleEmbedding); |
| 79 | + console.log("Comparing - Car vs Vehicle...: ", scoreCarWithVehicle.toFixed(7)); |
| 80 | + |
| 81 | + |
| 82 | + const scoreCarWithBird = cosineSimilarity(carEmbedding, birdEmbedding); |
| 83 | + console.log("Comparing - Car vs Bird...: ", scoreCarWithBird.toFixed(7)); |
| 84 | + |
| 85 | +} |
| 86 | + |
| 87 | +main().catch((err) => { |
| 88 | + console.error("The sample encountered an error:", err); |
| 89 | +}); |
0 commit comments