We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
when i run'sh eval.sh ' it show : ~/LangSplat/eval$ sh eval.sh ModuleList( (0): Linear(in_features=512, out_features=256, bias=True) (1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU() (3): Linear(in_features=256, out_features=128, bias=True) (4): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): ReLU() (6): Linear(in_features=128, out_features=64, bias=True) (7): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (8): ReLU() (9): Linear(in_features=64, out_features=32, bias=True) (10): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (11): ReLU() (12): Linear(in_features=32, out_features=3, bias=True) ) ModuleList( (0): Linear(in_features=3, out_features=16, bias=True) (1): ReLU() (2): Linear(in_features=16, out_features=32, bias=True) (3): ReLU() (4): Linear(in_features=32, out_features=64, bias=True) (5): ReLU() (6): Linear(in_features=64, out_features=128, bias=True) (7): ReLU() (8): Linear(in_features=128, out_features=256, bias=True) (9): ReLU() (10): Linear(in_features=256, out_features=256, bias=True) (11): ReLU() (12): Linear(in_features=256, out_features=512, bias=True) ) 0%| | 0/6 [00:00<?, ?it/s] Traceback (most recent call last): File "evaluate_iou_loc.py", line 339, in evaluate(feat_dir, output_path, ae_ckpt_path, json_folder, mask_thresh, args.encoder_dims, args.decoder_dims, logger) File "evaluate_iou_loc.py", line 260, in evaluate restored_feat = model.decode(sem_feat.flatten(0, 2)) File "../autoencoder/model.py", line 45, in decode x = x / x.norm(dim=-1, keepdim=True) RuntimeError: CUDA out of memory. Tried to allocate 4.13 GiB (GPU 0; 10.75 GiB total capacity; 4.50 GiB already allocated; 2.92 GiB free; 6.58 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
any help?thanks! GPU:2080ti
The text was updated successfully, but these errors were encountered:
No branches or pull requests
when i run'sh eval.sh ' it show :
~/LangSplat/eval$ sh eval.sh
ModuleList(
(0): Linear(in_features=512, out_features=256, bias=True)
(1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Linear(in_features=256, out_features=128, bias=True)
(4): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(5): ReLU()
(6): Linear(in_features=128, out_features=64, bias=True)
(7): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(8): ReLU()
(9): Linear(in_features=64, out_features=32, bias=True)
(10): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(11): ReLU()
(12): Linear(in_features=32, out_features=3, bias=True)
) ModuleList(
(0): Linear(in_features=3, out_features=16, bias=True)
(1): ReLU()
(2): Linear(in_features=16, out_features=32, bias=True)
(3): ReLU()
(4): Linear(in_features=32, out_features=64, bias=True)
(5): ReLU()
(6): Linear(in_features=64, out_features=128, bias=True)
(7): ReLU()
(8): Linear(in_features=128, out_features=256, bias=True)
(9): ReLU()
(10): Linear(in_features=256, out_features=256, bias=True)
(11): ReLU()
(12): Linear(in_features=256, out_features=512, bias=True)
)
0%| | 0/6 [00:00<?, ?it/s]
Traceback (most recent call last):
File "evaluate_iou_loc.py", line 339, in
evaluate(feat_dir, output_path, ae_ckpt_path, json_folder, mask_thresh, args.encoder_dims, args.decoder_dims, logger)
File "evaluate_iou_loc.py", line 260, in evaluate
restored_feat = model.decode(sem_feat.flatten(0, 2))
File "../autoencoder/model.py", line 45, in decode
x = x / x.norm(dim=-1, keepdim=True)
RuntimeError: CUDA out of memory. Tried to allocate 4.13 GiB (GPU 0; 10.75 GiB total capacity; 4.50 GiB already allocated; 2.92 GiB free; 6.58 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
any help?thanks!
GPU:2080ti
The text was updated successfully, but these errors were encountered: