-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchat_server.py
95 lines (75 loc) · 3.42 KB
/
chat_server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
from flask import Flask, request, jsonify, send_from_directory
from flask_cors import CORS
from g4f.client import Client
import uuid
import time
# Flask app setup3
app = Flask(__name__, static_url_path='', static_folder='static')
CORS(app) # Enable CORS for development/testing
# Initialize g4f client
client = Client()
# In-memory storage for chat history
user_histories = {}
# Maximum token limit for context
MAX_TOKENS = 3000
# Predefined expert-level context to guide the assistant in Czech
EXPERT_CONTEXT = """
Jste odborný asistent zaměřený na Českou republiku a její kraje. Poskytujete formální a odborné odpovědi o českých krajích, jejich historii, geografii a správním členění. Vaše odpovědi by měly být informativní, jasné a strukturované. Když mluvím o konkrétních krajích, popište jejich hlavní města, významné geografické body, ekonomiku a kulturní dědictví.
"""
@app.route('/')
def index():
return send_from_directory('static', 'index.html')
def trim_history_for_tokens(history, max_tokens):
"""
Trims the chat history to fit within the token limit.
Assumes each message is approximately 75 tokens on average.
"""
token_count = sum(len(msg["content"].split()) for msg in history)
while token_count > max_tokens:
history.pop(0)
token_count = sum(len(msg["content"].split()) for msg in history)
return history
@app.route('/chat', methods=['POST'])
def chat():
try:
# Extract the user-provided unique code
user_code = request.json.get('user_code')
user_message = request.json.get('message')
if not user_code or not user_message:
return jsonify({"error": "Missing user_code or message."}), 400
# Retrieve or initialize user's chat history
history = user_histories.setdefault(user_code, [])
history.append({"role": "user", "content": user_message})
# Prepend expert context to the history
history.insert(0, {"role": "system", "content": EXPERT_CONTEXT})
# Tokenize and trim history if necessary
history = trim_history_for_tokens(history, MAX_TOKENS)
# Simulate "thinking" cursor
time.sleep(0.1)
# Send request to g4f with user's history
response = client.chat.completions.create(
model="gpt-4o",
messages=history
)
if hasattr(response, 'choices') and len(response.choices) > 0:
bot_message = response.choices[0].message.content
history.append({"role": "assistant", "content": bot_message}) # Save bot response
return jsonify({"response": bot_message}), 200
else:
return jsonify({"error": "No response from assistant. Please try again."}), 408
except Exception as e:
print(f"Error: {e}")
return jsonify({"error": "Internal server error."}), 500
@app.route('/history', methods=['POST'])
def get_history():
"""Fetch the user's chat history."""
user_code = request.json.get('user_code')
if not user_code:
return jsonify({"error": "Missing user_code."}), 400
history = user_histories.get(user_code, [])
return jsonify({"history": history}), 200
@app.route('/<path:path>')
def serve_static(path):
return send_from_directory('static', path)
if __name__ == '__main__':
app.run(host='0.0.0.0', port=5000)