-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy path_message_graphs.py
585 lines (542 loc) · 19.7 KB
/
_message_graphs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
#! /usr/bin/python3
from collections import Counter
from datetime import datetime, timedelta
import numpy as np
import pandas as pd
import bokeh
import bokeh.plotting as bkh
from bokeh.core.properties import value
from bokeh.transform import dodge
import codecs
import csv
# https://flatuicolors.com/palette/es
colors = ["#34ace0", "#ffb142"]
colors = ["#686de0", "#ffbe76"]
def count_occurrences(message, wordlist):
count = 0
for substring in wordlist:
count += message.lower().count(substring)
return count
def _parse_chat(chat, date_filter, wordlist):
metrics = {}
metrics["A"] = {}
metrics["B"] = {}
metrics["A"]["days"] = {}
metrics["B"]["days"] = {}
metrics["A"]["months"] = {}
metrics["B"]["months"] = {}
metrics["A"]["months_chars"] = {}
metrics["B"]["months_chars"] = {}
metrics["A"]["weekdays"] = {}
metrics["B"]["weekdays"] = {}
metrics["A"]["hourofday"] = {}
metrics["B"]["hourofday"] = {}
metrics["A"]["monthly_n_replied"] = {}
metrics["B"]["monthly_n_replied"] = {}
metrics["A"]["monthly_time_to_reply"] = {}
metrics["B"]["monthly_time_to_reply"] = {}
metrics["A"]["monthly_avg_reply_time"] = {}
metrics["B"]["monthly_avg_reply_time"] = {}
metrics["A"]["monthly_pictures"] = {}
metrics["B"]["monthly_pictures"] = {}
metrics["A"]["monthly_calls"] = {}
metrics["B"]["monthly_calls"] = {}
metrics["A"]["monthly_word_occurrence"] = {}
metrics["B"]["monthly_word_occurrence"] = {}
metrics["A"]["monthly_call_duration"] = {}
metrics["B"]["monthly_call_duration"] = {}
# person A is the 2nd message (1st can be "joined telegram" which has no "from" key)
metrics["A"]["name"] = chat["messages"][1]["from"]
metrics["A"]["call_hourofday"] = {}
metrics["B"]["call_hourofday"] = {}
previous_message = {}
oldest_date = datetime.strptime(date_filter, "%Y-%m-%d")
for message in chat["messages"]:
if message["type"] == "unsupported":
continue
person = "B"
if "from" in message:
if metrics["A"]["name"] in message["from"]:
person = "A"
elif "actor" in message:
if metrics["A"]["name"] in message["actor"]:
person = "A"
date_obj = datetime.strptime(message["date"], "%Y-%m-%dT%H:%M:%S")
# check if message needs to be reviewed based on date
if date_obj >= oldest_date:
month_str = str(date_obj.year) + "-" + str(date_obj.month) + "-1"
month_obj = datetime.strptime(month_str, "%Y-%m-%d")
# text and media
if message["type"] == "message":
metrics[person]["name"] = message["from"]
metrics[person]["months"][month_obj] = (
metrics[person]["months"].get(month_obj, 0) + 1
)
metrics[person]["days"][date_obj.date()] = (
metrics[person]["days"].get(date_obj.date(), 0) + 1
)
metrics[person]["weekdays"][date_obj.weekday()] = (
metrics[person]["weekdays"].get(date_obj.weekday(), 0) + 1
)
metrics[person]["hourofday"][date_obj.hour] = (
metrics[person]["hourofday"].get(date_obj.hour, 0) + 1
)
if type(message["text"]) is list: # multiple elements in one message
for line in message["text"]:
if type(line) is str:
# count characters
metrics[person]["months_chars"][month_obj] = metrics[
person
]["months_chars"].get(month_obj, 0) + len(line)
# check if words occurr in message
metrics[person]["monthly_word_occurrence"][
month_obj
] = metrics[person]["monthly_word_occurrence"].get(
month_obj, 0
) + count_occurrences(
line, wordlist
)
elif type(message["text"]) is str:
# count characters
metrics[person]["months_chars"][month_obj] = metrics[person][
"months_chars"
].get(month_obj, 0) + len(message["text"])
# check if words occurr in message
metrics[person]["monthly_word_occurrence"][month_obj] = metrics[
person
]["monthly_word_occurrence"].get(month_obj, 0) + count_occurrences(
message["text"], wordlist
)
if "from" in previous_message:
if not (previous_message["from"] == message["from"]):
replytime = (
datetime.strptime(message["date"], "%Y-%m-%dT%H:%M:%S")
- datetime.strptime(
previous_message["date"], "%Y-%m-%dT%H:%M:%S"
)
).total_seconds()
metrics[person]["monthly_n_replied"][month_obj] = (
metrics[person]["monthly_n_replied"].get(month_obj, 0) + 1
)
metrics[person]["monthly_time_to_reply"][month_obj] = (
metrics[person]["monthly_time_to_reply"].get(month_obj, 0)
+ replytime
)
avg_time = metrics[person]["monthly_time_to_reply"].get(
month_obj, 0
) / metrics[person]["monthly_n_replied"].get(month_obj, 0)
metrics[person]["monthly_avg_reply_time"][month_obj] = avg_time
if "photo" in message:
metrics[person]["monthly_pictures"][month_obj] = (
metrics[person]["monthly_pictures"].get(month_obj, 0) + 1
)
# calls
elif message["type"] == "service":
if message["action"] == "phone_call":
if (
"duration_seconds" in message
): # only count if the call was answered
metrics["A"]["monthly_call_duration"][month_obj] = metrics["A"][
"monthly_call_duration"
].get(month_obj, 0) + int(message["duration_seconds"])
metrics["A"]["monthly_calls"][month_obj] = (
metrics["A"]["monthly_calls"].get(month_obj, 0) + 1
)
metrics["A"]["call_hourofday"][date_obj.hour] = (
metrics["A"]["call_hourofday"].get(date_obj.hour, 0) + 1
)
previous_message = message
metrics["B"]["monthly_call_duration"] = metrics["A"]["monthly_call_duration"]
metrics["B"]["monthly_calls"] = metrics["A"]["monthly_calls"]
metrics["B"]["call_hourofday"] = metrics["A"]["call_hourofday"]
metrics["A"]["day_series"] = pd.Series(metrics["A"]["days"])
metrics["B"]["day_series"] = pd.Series(metrics["B"]["days"])
metrics["A"]["series_days"] = pd.Series(metrics["A"]["days"])
metrics["B"]["series_days"] = pd.Series(metrics["B"]["days"])
metrics["A"]["frame_days"] = metrics["A"]["series_days"].to_frame(name="frequency")
metrics["B"]["frame_days"] = metrics["B"]["series_days"].to_frame(name="frequency")
# metrics['A']['series_month'] = pd.Series(metrics['A']['months'])
# metrics['B']['series_month'] = pd.Series(metrics['B']['months'])
# metrics['A']['frame_months'] = metrics['A']['series_month'].to_frame(name='frequency')
# metrics['B']['frame_months'] = metrics['B']['series_month'].to_frame(name='frequency')
metrics["A"]["frame_months"] = hacky_solution_to_fix_timedelta_dodge(
metrics["A"]["months"], -5
)
metrics["B"]["frame_months"] = hacky_solution_to_fix_timedelta_dodge(
metrics["B"]["months"], 5
)
metrics["A"]["frame_months_chars"] = hacky_solution_to_fix_timedelta_dodge(
metrics["A"]["months_chars"], -5
)
metrics["B"]["frame_months_chars"] = hacky_solution_to_fix_timedelta_dodge(
metrics["B"]["months_chars"], 5
)
metrics["A"]["frame_months_reply_time"] = hacky_solution_to_fix_timedelta_dodge(
metrics["A"]["monthly_avg_reply_time"], -5
)
metrics["B"]["frame_months_reply_time"] = hacky_solution_to_fix_timedelta_dodge(
metrics["B"]["monthly_avg_reply_time"], 5
)
metrics["A"]["frame_months_pictures"] = hacky_solution_to_fix_timedelta_dodge(
metrics["A"]["monthly_pictures"], -5
)
metrics["B"]["frame_months_pictures"] = hacky_solution_to_fix_timedelta_dodge(
metrics["B"]["monthly_pictures"], 5
)
metrics["A"]["frame_months_calls"] = hacky_solution_to_fix_timedelta_dodge(
metrics["A"]["monthly_calls"], -5
)
metrics["B"]["frame_months_calls"] = hacky_solution_to_fix_timedelta_dodge(
metrics["B"]["monthly_calls"], 5
)
metrics["A"]["frame_months_call_duration"] = hacky_solution_to_fix_timedelta_dodge(
metrics["A"]["monthly_call_duration"], -5
)
metrics["B"]["frame_months_call_duration"] = hacky_solution_to_fix_timedelta_dodge(
metrics["B"]["monthly_call_duration"], 5
)
metrics["A"][
"frame_months_word_occurrence"
] = hacky_solution_to_fix_timedelta_dodge(
metrics["A"]["monthly_word_occurrence"], -5
)
metrics["B"][
"frame_months_word_occurrence"
] = hacky_solution_to_fix_timedelta_dodge(
metrics["B"]["monthly_word_occurrence"], 5
)
metrics["A"]["series_weekdays"] = pd.Series(metrics["A"]["weekdays"])
metrics["B"]["series_weekdays"] = pd.Series(metrics["B"]["weekdays"])
metrics["A"]["frame_weekdays"] = metrics["A"]["series_weekdays"].to_frame(
name="frequency"
)
metrics["B"]["frame_weekdays"] = metrics["B"]["series_weekdays"].to_frame(
name="frequency"
)
metrics["A"]["series_hoursofday"] = pd.Series(metrics["A"]["hourofday"])
metrics["B"]["series_hoursofday"] = pd.Series(metrics["B"]["hourofday"])
metrics["A"]["frame_hoursofday"] = metrics["A"]["series_hoursofday"].to_frame(
name="frequency"
)
metrics["B"]["frame_hoursofday"] = metrics["B"]["series_hoursofday"].to_frame(
name="frequency"
)
metrics["A"]["series_call_hoursofday"] = pd.Series(metrics["A"]["call_hourofday"])
metrics["B"]["series_call_hoursofday"] = pd.Series(metrics["B"]["call_hourofday"])
metrics["A"]["frame_call_hoursofday"] = metrics["A"][
"series_call_hoursofday"
].to_frame(name="frequency")
metrics["B"]["frame_call_hoursofday"] = metrics["B"][
"series_call_hoursofday"
].to_frame(name="frequency")
return metrics
"""
@input months
@input delta (int) the x-offset in days
@output frame (frame)
This is used to shift monthly data on the time axis by a couple of days.
Used to display multiple vbars next to each other.
The bokeh.transforms.dodge method does not support offsets of type (datetime)
"""
def hacky_solution_to_fix_timedelta_dodge(months, delta):
altered = {}
for month in months:
altered[month + timedelta(days=delta)] = altered.get(
month + timedelta(days=delta), 0
) + months.get(month, 0)
series = pd.Series(altered)
return series.to_frame(name="frequency")
# called by the main script
def _message_graphs(chat, date_filter, wordlist):
metrics = _parse_chat(chat, date_filter, wordlist)
# commented out because this graph is visually unpleasing and not very
# filename = 'plot_days_' + metrics['A']['name'] + '.html'
# filename = ''.join([x for x in filename if ord(x) < 128]) # strip non-ascii characters
# histogram_days(filename, metrics['A']['frame_days'], metrics['A']['name'], colors[0])
# filename = 'plot_days_' + metrics['B']['name'] + '.html'
# filename = ''.join([x for x in filename if ord(x) < 128]) # strip non-ascii characters
# histogram_days(filename, metrics['B']['frame_days'], metrics['B']['name'], colors[1])
# histogram_month_stacked('plot_month.html', data_months, metrics['A']['name'], metrics['B']['name'])
histogram_month(
"plot_month.html",
metrics,
"frame_months",
"Monthly message count over time per person",
"Message count",
)
histogram_month(
"plot_month_replytime.html",
metrics,
"frame_months_reply_time",
"Average monthly reply delay time over time per person",
"average delay in seconds",
)
histogram_month(
"plot_month_calls.html",
metrics,
"frame_months_calls",
"Number of calls per month (both persons)",
"Amount",
)
histogram_month(
"plot_month_call_time.html",
metrics,
"frame_months_call_duration",
"Total time on call per month (both persons)",
"total time in seconds",
)
histogram_month(
"plot_month_photos.html",
metrics,
"frame_months_pictures",
"Monthly photo count over time per person",
"number of photos sent",
)
histogram_month(
"plot_month_word_occurrence.html",
metrics,
"frame_months_word_occurrence",
"Occurrences of the strings: [" + ";\n".join(wordlist) + "]",
"number of occurrences",
)
histogram_weekdays("plot_weekdays.html", metrics)
histogram_hourofday(
"plot_hoursofday_messages.html",
metrics,
"frame_hoursofday",
"Message count distribution throughout the day",
"message count",
)
histogram_hourofday(
"plot_hoursofday_calls.html",
metrics,
"frame_call_hoursofday",
"Call distribution throughout the day",
"number of calls",
)
histogram_month_chars("plot_month_characters.html", metrics)
return metrics
"""
@input filename
@input data
@input namea
@input nameb
This method is currently not used.
However it provides a different approach to display the data stacked instead of
both person's bars next to each other.
Though I found this visualization to be more confusing and the data
between the two persons cannot easily be compared.
"""
# https://bokeh.pydata.org/en/latest/docs/user_guide/categorical.html
def histogram_month_stacked(filename, data, namea, nameb):
bkh.reset_output()
bkh.output_file(filename, title=filename)
##### STACKED BAR GRAPH for monthly data
fig = bkh.figure(
x_axis_type="datetime", title="Messages per Month", width=720, height=480
)
fig.vbar_stack(
[namea, nameb],
x="index",
width=timedelta(days=20),
color=colors,
source=data,
legend=[value(x) for x in [namea, nameb]],
)
fig.xaxis.axis_label = "Date"
fig.yaxis.axis_label = "Message count"
bkh.show(fig)
return
"""
@input filename
@input metrics (dict)
"""
def histogram_month_chars(filename, metrics):
bkh.reset_output()
bkh.output_file(filename, title=filename)
data_months = {
"index": metrics["A"]["frame_months_chars"].index,
metrics["A"]["name"]: metrics["A"]["frame_months_chars"].frequency,
metrics["B"]["name"]: metrics["B"]["frame_months_chars"].frequency,
}
fig = bkh.figure(
x_axis_type="datetime",
title="Monthly character count over time per person",
width=720,
height=480,
)
fig.vbar(
x="index",
top="frequency",
width=timedelta(days=10),
source=metrics["A"]["frame_months_chars"],
color=colors[0],
legend=metrics["A"]["name"],
)
fig.vbar(
x="index",
top="frequency",
width=timedelta(days=10),
source=metrics["B"]["frame_months_chars"],
color=colors[1],
legend=metrics["B"]["name"],
)
fig.xaxis.axis_label = "Date"
fig.yaxis.axis_label = "Number of characters"
bkh.show(fig)
return
"""
@input filename
@input metrics (dict)
@input key
@input title_str
@input ylabel
"""
def histogram_month(filename, metrics, key, title_str, ylabel):
bkh.reset_output()
bkh.output_file(filename, title=filename)
data_months = {
"index": metrics["A"][key].index,
metrics["A"]["name"]: metrics["A"]["frame_months"].frequency,
metrics["B"]["name"]: metrics["B"][key].frequency,
}
fig = bkh.figure(x_axis_type="datetime", title=title_str, width=720, height=480)
fig.vbar(
x="index",
top="frequency",
width=timedelta(days=10),
source=metrics["A"][key],
color=colors[0],
legend=metrics["A"]["name"],
)
fig.vbar(
x="index",
top="frequency",
width=timedelta(days=10),
source=metrics["B"][key],
color=colors[1],
legend=metrics["B"]["name"],
)
fig.xaxis.axis_label = "Date"
fig.yaxis.axis_label = ylabel
bkh.show(fig)
return
"""
@input filename
@input frame
@imput name of the person
@input color for this person
"""
def histogram_days(filename, frame, name, color):
bkh.reset_output()
bkh.output_file(filename, title=filename)
fig = bkh.figure(
x_axis_type="datetime",
title="Message count per day of " + name,
width=720,
height=480,
)
fig.line(frame.index, frame.frequency, color=color, line_width=3)
fig.xaxis.axis_label = "Date"
fig.yaxis.axis_label = "Frequency"
bkh.show(fig)
return
"""
@input filename
@input metrics (dict)
"""
def histogram_weekdays(filename, metrics):
bkh.reset_output()
bkh.output_file(filename, title=filename)
weekdays = [
"Monday",
"Tuesday",
"Wednesday",
"Thursday",
"Friday",
"Saturday",
"Sunday",
]
fig = bkh.figure(
x_range=weekdays,
title="Message distribution over weekdays",
width=720,
height=480,
)
fig.vbar(
x=dodge("index", 0.35, range=fig.x_range),
top="frequency",
width=0.3,
source=metrics["A"]["frame_weekdays"],
color=colors[0],
legend=metrics["A"]["name"],
)
fig.vbar(
x=dodge("index", 0.65, range=fig.x_range),
top="frequency",
width=0.3,
source=metrics["B"]["frame_weekdays"],
color=colors[1],
legend=metrics["B"]["name"],
)
fig.xaxis.axis_label = "Weekday"
fig.yaxis.axis_label = "Message count"
bkh.show(fig)
return
"""
@input filename
@input metrics (dict)
@input key
@input title_str
@input ylabel
"""
def histogram_hourofday(filename, metrics, key, title_str, ylabel):
bkh.reset_output()
bkh.output_file(filename, title=filename)
hours = [
"00:00",
"01:00",
"02:00",
"03:00",
"04:00",
"05:00",
"06:00",
"07:00",
"08:00",
"09:00",
"10:00",
"11:00",
"12:00",
"13:00",
"14:00",
"15:00",
"16:00",
"17:00",
"18:00",
"19:00",
"20:00",
"21:00",
"22:00",
"23:00",
]
fig = bkh.figure(x_range=hours, title=title_str, width=1280, height=480)
fig.vbar(
x=dodge("index", 0.35, range=fig.x_range),
top="frequency",
width=0.3,
source=metrics["A"][key],
color=colors[0],
legend=metrics["A"]["name"],
)
fig.vbar(
x=dodge("index", 0.65, range=fig.x_range),
top="frequency",
width=0.3,
source=metrics["B"][key],
color=colors[1],
legend=metrics["B"]["name"],
)
fig.xaxis.axis_label = "Time"
fig.yaxis.axis_label = ylabel
bkh.show(fig)
return