-
Notifications
You must be signed in to change notification settings - Fork 755
/
Copy pathtrain_sd3_lora.py
83 lines (75 loc) · 3.44 KB
/
train_sd3_lora.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
from diffsynth import ModelManager, SD3ImagePipeline
from diffsynth.trainers.text_to_image import LightningModelForT2ILoRA, add_general_parsers, launch_training_task
import torch, os, argparse
os.environ["TOKENIZERS_PARALLELISM"] = "True"
class LightningModel(LightningModelForT2ILoRA):
def __init__(
self,
torch_dtype=torch.float16, pretrained_weights=[], preset_lora_path=None,
learning_rate=1e-4, use_gradient_checkpointing=True,
lora_rank=4, lora_alpha=4, lora_target_modules="to_q,to_k,to_v,to_out", init_lora_weights="gaussian", pretrained_lora_path=None,
):
super().__init__(learning_rate=learning_rate, use_gradient_checkpointing=use_gradient_checkpointing)
# Load models
model_manager = ModelManager(torch_dtype=torch_dtype, device=self.device)
model_manager.load_models(pretrained_weights)
self.pipe = SD3ImagePipeline.from_model_manager(model_manager)
self.pipe.scheduler.set_timesteps(1000, training=True)
if preset_lora_path is not None:
preset_lora_path = preset_lora_path.split(",")
for path in preset_lora_path:
model_manager.load_lora(path)
self.freeze_parameters()
self.add_lora_to_model(
self.pipe.denoising_model(),
lora_rank=lora_rank,
lora_alpha=lora_alpha,
lora_target_modules=lora_target_modules,
init_lora_weights=init_lora_weights,
pretrained_lora_path=pretrained_lora_path,
)
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--pretrained_path",
type=str,
default=None,
required=True,
help="Path to pretrained models, separated by comma. For example, SD3: `models/stable_diffusion_3/sd3_medium_incl_clips_t5xxlfp16.safetensors`, SD3.5-large: `models/stable_diffusion_3/text_encoders/clip_g.safetensors,models/stable_diffusion_3/text_encoders/clip_l.safetensors,models/stable_diffusion_3/text_encoders/t5xxl_fp16.safetensors,models/stable_diffusion_3/sd3.5_large.safetensors`",
)
parser.add_argument(
"--lora_target_modules",
type=str,
default="a_to_qkv,b_to_qkv,norm_1_a.linear,norm_1_b.linear,a_to_out,b_to_out,ff_a.0,ff_a.2,ff_b.0,ff_b.2",
help="Layers with LoRA modules.",
)
parser.add_argument(
"--preset_lora_path",
type=str,
default=None,
help="Preset LoRA path.",
)
parser.add_argument(
"--num_timesteps",
type=int,
default=1000,
help="Number of total timesteps. For turbo models, please set this parameter to the number of expected number of inference steps.",
)
parser = add_general_parsers(parser)
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
model = LightningModel(
torch_dtype=torch.float32 if args.precision == "32" else torch.float16,
pretrained_weights=args.pretrained_path.split(","),
preset_lora_path=args.preset_lora_path,
learning_rate=args.learning_rate,
use_gradient_checkpointing=args.use_gradient_checkpointing,
lora_rank=args.lora_rank,
lora_alpha=args.lora_alpha,
init_lora_weights=args.init_lora_weights,
pretrained_lora_path=args.pretrained_lora_path,
lora_target_modules=args.lora_target_modules
)
launch_training_task(model, args)