-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresults_summary.txt
136 lines (123 loc) · 8.35 KB
/
results_summary.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
##########################
CNN output log
Epoch 1/10
2019-12-15 21:53:30.991071: I tensorflow/stream_executor/dso_loader.cc:152] successfully opened CUDA library libcublas.so.10.0 locally
1875/1875 [==============================] - 12s 6ms/step - loss: 0.1569 - accuracy: 0.9591 - val_loss: 0.0046 - val_accuracy: 0.9799
Epoch 2/10
1875/1875 [==============================] - 10s 5ms/step - loss: 0.0489 - accuracy: 0.9852 - val_loss: 0.0021 - val_accuracy: 0.9825
Epoch 3/10
1875/1875 [==============================] - 11s 6ms/step - loss: 0.0347 - accuracy: 0.9891 - val_loss: 0.0041 - val_accuracy: 0.9822
Epoch 4/10
1875/1875 [==============================] - 9s 5ms/step - loss: 0.0268 - accuracy: 0.9920 - val_loss: 0.0071 - val_accuracy: 0.9842
Epoch 5/10
1875/1875 [==============================] - 10s 5ms/step - loss: 0.0219 - accuracy: 0.9933 - val_loss: 0.0120 - val_accuracy: 0.9764
Epoch 6/10
1875/1875 [==============================] - 9s 5ms/step - loss: 0.0168 - accuracy: 0.9947 - val_loss: 7.3590e-05 - val_accuracy: 0.9900
Epoch 7/10
1875/1875 [==============================] - 9s 5ms/step - loss: 0.0145 - accuracy: 0.9956 - val_loss: 6.8210e-04 - val_accuracy: 0.9936
Epoch 8/10
1875/1875 [==============================] - 9s 5ms/step - loss: 0.0133 - accuracy: 0.9959 - val_loss: 1.6336e-04 - val_accuracy: 0.9902
Epoch 9/10
1875/1875 [==============================] - 9s 5ms/step - loss: 0.0097 - accuracy: 0.9967 - val_loss: 7.1237e-04 - val_accuracy: 0.9923
Epoch 10/10
1875/1875 [==============================] - 9s 5ms/step - loss: 0.0086 - accuracy: 0.9973 - val_loss: 5.6414e-04 - val_accuracy: 0.9901
dict_keys(['val_loss', 'val_accuracy', 'loss', 'accuracy'])
Test accuracy for plain: 0.9901000261306763
Test accuracy for scaled: 0.6067000031471252
##########################
##########################
DF_CNN output log
1875/1875 [==============================] - 109s 58ms/step - loss: 0.6251 - accuracy: 0.8135 - val_loss: 0.0989 - val_accuracy: 0.8757
Epoch 2/20
1875/1875 [==============================] - 110s 58ms/step - loss: 0.4250 - accuracy: 0.8678 - val_loss: 0.1074 - val_accuracy: 0.8976
Epoch 3/20
1875/1875 [==============================] - 110s 59ms/step - loss: 0.3555 - accuracy: 0.8906 - val_loss: 0.0834 - val_accuracy: 0.9143
Epoch 4/20
1875/1875 [==============================] - 112s 59ms/step - loss: 0.3203 - accuracy: 0.9030 - val_loss: 0.1777 - val_accuracy: 0.9215
Epoch 5/20
1875/1875 [==============================] - 110s 59ms/step - loss: 0.2983 - accuracy: 0.9101 - val_loss: 0.1365 - val_accuracy: 0.9233
Epoch 6/20
1875/1875 [==============================] - 107s 57ms/step - loss: 0.2881 - accuracy: 0.9119 - val_loss: 0.0165 - val_accuracy: 0.9322
Epoch 7/20
1875/1875 [==============================] - 110s 59ms/step - loss: 0.2740 - accuracy: 0.9174 - val_loss: 0.0334 - val_accuracy: 0.9333
Epoch 8/20
1875/1875 [==============================] - 111s 59ms/step - loss: 0.2722 - accuracy: 0.9171 - val_loss: 0.0162 - val_accuracy: 0.9350
Epoch 9/20
1875/1875 [==============================] - 110s 58ms/step - loss: 0.2619 - accuracy: 0.9208 - val_loss: 0.0520 - val_accuracy: 0.9325
Epoch 10/20
1875/1875 [==============================] - 110s 59ms/step - loss: 0.2576 - accuracy: 0.9216 - val_loss: 0.0143 - val_accuracy: 0.9352
Epoch 11/20
1875/1875 [==============================] - 112s 60ms/step - loss: 0.2521 - accuracy: 0.9232 - val_loss: 0.0292 - val_accuracy: 0.9356
Epoch 12/20
1875/1875 [==============================] - 113s 60ms/step - loss: 0.2470 - accuracy: 0.9249 - val_loss: 0.0263 - val_accuracy: 0.9424
Epoch 13/20
1875/1875 [==============================] - 110s 59ms/step - loss: 0.2408 - accuracy: 0.9269 - val_loss: 0.0113 - val_accuracy: 0.9444
Epoch 14/20
1875/1875 [==============================] - 111s 59ms/step - loss: 0.2413 - accuracy: 0.9257 - val_loss: 0.0066 - val_accuracy: 0.9360
Epoch 15/20
1875/1875 [==============================] - 112s 60ms/step - loss: 0.2401 - accuracy: 0.9269 - val_loss: 0.0761 - val_accuracy: 0.9449
Epoch 16/20
1875/1875 [==============================] - 115s 61ms/step - loss: 0.2363 - accuracy: 0.9269 - val_loss: 0.0442 - val_accuracy: 0.9409
Epoch 17/20
1875/1875 [==============================] - 112s 60ms/step - loss: 0.2352 - accuracy: 0.9277 - val_loss: 0.0417 - val_accuracy: 0.9413
Epoch 18/20
1875/1875 [==============================] - 112s 60ms/step - loss: 0.2359 - accuracy: 0.9268 - val_loss: 0.0541 - val_accuracy: 0.9419
Epoch 19/20
1875/1875 [==============================] - 112s 60ms/step - loss: 0.2351 - accuracy: 0.9278 - val_loss: 0.0357 - val_accuracy: 0.9442
Epoch 20/20
1875/1875 [==============================] - 114s 61ms/step - loss: 0.2308 - accuracy: 0.9286 - val_loss: 0.0666 - val_accuracy: 0.9402
Test accuracy of deformable convolution with scaled images 0.9412000179290771
Test accuracy of deformable convolution with regular images 0.9610999822616577
#########################
#########################
ResNet output log
Epoch 1/10
2019-12-15 21:57:10.530208: I tensorflow/stream_executor/dso_loader.cc:152] successfully opened CUDA library libcublas.so.10.0 locally
1875/1875 [==============================] - 6s 3ms/step - loss: 2.1209 - accuracy: 0.2493 - val_loss: 1.8849 - val_accuracy: 0.3402
Epoch 2/10
1875/1875 [==============================] - 6s 3ms/step - loss: 1.8233 - accuracy: 0.3929 - val_loss: 1.6064 - val_accuracy: 0.4573
Epoch 3/10
1875/1875 [==============================] - 6s 3ms/step - loss: 1.5155 - accuracy: 0.5448 - val_loss: 1.3087 - val_accuracy: 0.6331
Epoch 4/10
1875/1875 [==============================] - 6s 3ms/step - loss: 1.2010 - accuracy: 0.6963 - val_loss: 0.9635 - val_accuracy: 0.7409
Epoch 5/10
1875/1875 [==============================] - 6s 3ms/step - loss: 0.9227 - accuracy: 0.7819 - val_loss: 0.8027 - val_accuracy: 0.7726
Epoch 6/10
1875/1875 [==============================] - 6s 3ms/step - loss: 0.7190 - accuracy: 0.8292 - val_loss: 1.1643 - val_accuracy: 0.6177
Epoch 7/10
1875/1875 [==============================] - 6s 3ms/step - loss: 0.5761 - accuracy: 0.8634 - val_loss: 0.7138 - val_accuracy: 0.7572
Epoch 8/10
1875/1875 [==============================] - 6s 3ms/step - loss: 0.4788 - accuracy: 0.8855 - val_loss: 0.3972 - val_accuracy: 0.8872
Epoch 9/10
1875/1875 [==============================] - 6s 3ms/step - loss: 0.4076 - accuracy: 0.9026 - val_loss: 0.5655 - val_accuracy: 0.7872
Epoch 10/10
1875/1875 [==============================] - 6s 3ms/step - loss: 0.3586 - accuracy: 0.9138 - val_loss: 0.2791 - val_accuracy: 0.9235
dict_keys(['val_loss', 'val_accuracy', 'loss', 'accuracy'])
Test accuracy for plain: 0.9235000014305115
Test accuracy for scaled: 0.4957999885082245
############################
############################
DF_ResNet output log
Epoch 1/10
1873/1875 [============================>.] - ETA: 0s - loss: 2.2593 - accuracy: 0.1962
1875/1875 [==============================] - 51s 27ms/step - loss: 2.2592 - accuracy: 0.1962 - val_loss: 2.1818 - val_accuracy: 0.2574
Epoch 2/10
1875/1875 [==============================] - 48s 26ms/step - loss: 2.1343 - accuracy: 0.2629 - val_loss: 1.9952 - val_accuracy: 0.2842
Epoch 3/10
1875/1875 [==============================] - 49s 26ms/step - loss: 1.9705 - accuracy: 0.2984 - val_loss: 1.8238 - val_accuracy: 0.3260
Epoch 4/10
1875/1875 [==============================] - 48s 26ms/step - loss: 1.8339 - accuracy: 0.3340 - val_loss: 1.7011 - val_accuracy: 0.3489
Epoch 5/10
1875/1875 [==============================] - 48s 26ms/step - loss: 1.7354 - accuracy: 0.3711 - val_loss: 1.6063 - val_accuracy: 0.3789
Epoch 6/10
1875/1875 [==============================] - 48s 26ms/step - loss: 1.6583 - accuracy: 0.4092 - val_loss: 1.5078 - val_accuracy: 0.4456
Epoch 7/10
1875/1875 [==============================] - 50s 26ms/step - loss: 1.5819 - accuracy: 0.4497 - val_loss: 1.4673 - val_accuracy: 0.4604
Epoch 8/10
1875/1875 [==============================] - 48s 26ms/step - loss: 1.5049 - accuracy: 0.4779 - val_loss: 1.3409 - val_accuracy: 0.4973
Epoch 9/10
1875/1875 [==============================] - 50s 27ms/step - loss: 1.4422 - accuracy: 0.4979 - val_loss: 1.4372 - val_accuracy: 0.4628
Epoch 10/10
1875/1875 [==============================] - 49s 26ms/step - loss: 1.3880 - accuracy: 0.5145 - val_loss: 1.5132 - val_accuracy: 0.4243
Test accuracy of deformable convolution with scaled images 0.131400004029274
Test accuracy of deformable convolution with regular images 0.4242999851703644