-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdaam_ddim_visualize.py
412 lines (361 loc) · 16.6 KB
/
daam_ddim_visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
"""https://github.com/cccntu/efficient-prompt-to-prompt/blob/main/ddim-inversion.ipynb"""
from functools import partial
from diffusers import StableDiffusionPipeline
from PIL import Image
from torchvision import transforms
from typing import Callable, List, Optional, Union
import torch
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion.safety_checker import \
StableDiffusionSafetyChecker
from diffusers.schedulers import DDIMScheduler,PNDMScheduler, LMSDiscreteScheduler
from diffusers.utils import logging
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
import argparse
from daam import trace, set_seed
def backward_ddim(x_t, alpha_t, alpha_tm1, eps_xt):
""" from noise to image"""
return (
alpha_tm1**0.5
* (
(alpha_t**-0.5 - alpha_tm1**-0.5) * x_t
+ ((1 / alpha_tm1 - 1) ** 0.5 - (1 / alpha_t - 1) ** 0.5) * eps_xt
)
+ x_t
)
def forward_ddim(x_t, alpha_t, alpha_tp1, eps_xt):
""" from image to noise, it's the same as backward_ddim"""
return backward_ddim(x_t, alpha_t, alpha_tp1, eps_xt)
class DDIMPipeline(DiffusionPipeline):
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
safety_checker: StableDiffusionSafetyChecker = None,
feature_extractor: CLIPFeatureExtractor = None,
):
super().__init__()
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
)
self.vae_scale_factor = 2 ** (len(vae.config.block_out_channels) - 1)
self.forward_diffusion = partial(self.backward_diffusion, reverse_process=True)
def run_safety_checker(self, image, device, dtype):
if self.safety_checker is not None:
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(device)
image, has_nsfw_concept = self.safety_checker(
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
)
else:
has_nsfw_concept = None
return image, has_nsfw_concept
@torch.inference_mode()
def get_text_embedding(self, prompt):
text_input_ids = self.tokenizer(
prompt,
padding="max_length",
truncation=True,
max_length=self.tokenizer.model_max_length,
return_tensors="pt",
).input_ids
text_embeddings = self.text_encoder(text_input_ids.to(self.device))[0]
return text_embeddings
@torch.inference_mode()
def get_image_latents(self, image, sample=True, rng_generator=None):
encoding_dist = self.vae.encode(image).latent_dist
if sample:
encoding = encoding_dist.sample(generator=rng_generator)
else:
encoding = encoding_dist.mode()
latents = encoding * 0.18215
return latents
@torch.inference_mode()
def backward_diffusion(
self,
use_old_emb_i=25,
prompt=None,
text_embeddings=None,
old_text_embeddings=None,
new_text_embeddings=None,
latents: Optional[torch.FloatTensor] = None,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: Optional[int] = 1,
reverse_process: True = False,
**kwargs,
):
""" Generate image from text prompt and latents
"""
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
if text_embeddings is None:
text_embeddings = self._encode_prompt(prompt, device=self.device,
num_images_per_prompt=1,
do_classifier_free_guidance=do_classifier_free_guidance)
# set timesteps
self.scheduler.set_timesteps(num_inference_steps)
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
timesteps_tensor = self.scheduler.timesteps.to(self.device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
if old_text_embeddings is not None and new_text_embeddings is not None:
prompt_to_prompt = True
else:
prompt_to_prompt = False
for i, t in enumerate(
self.progress_bar(timesteps_tensor if not reverse_process else reversed(timesteps_tensor))):
if prompt_to_prompt:
if i < use_old_emb_i:
text_embeddings = old_text_embeddings
else:
text_embeddings = new_text_embeddings
# expand the latents if we are doing classifier free guidance
latent_model_input = (
torch.cat([latents] * 2) if do_classifier_free_guidance else latents
)
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
noise_pred = self.unet(
latent_model_input, t, encoder_hidden_states=text_embeddings
).sample
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
prev_timestep = (
t
- self.scheduler.config.num_train_timesteps
// self.scheduler.num_inference_steps
)
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
# ddim
alpha_prod_t = self.scheduler.alphas_cumprod[t]
alpha_prod_t_prev = (
self.scheduler.alphas_cumprod[prev_timestep]
if prev_timestep >= 0
else self.scheduler.final_alpha_cumprod
)
if reverse_process:
alpha_prod_t, alpha_prod_t_prev = alpha_prod_t_prev, alpha_prod_t
latents = backward_ddim(
x_t=latents,
alpha_t=alpha_prod_t,
alpha_tm1=alpha_prod_t_prev,
eps_xt=noise_pred,
)
return latents
@torch.inference_mode()
def decode_image(self, latents: torch.FloatTensor, **kwargs) -> List["PIL_IMAGE"]:
scaled_latents = 1 / 0.18215 * latents
image = [
self.vae.decode(scaled_latents[i: i + 1]).sample for i in range(len(latents))
]
image = torch.cat(image, dim=0)
return image
@torch.inference_mode()
def torch_to_numpy(self, image) -> List["PIL_IMAGE"]:
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()
return image
def _encode_prompt(
self,
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt=None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
device: (`torch.device`):
torch device
num_images_per_prompt (`int`):
number of images that should be generated per prompt
do_classifier_free_guidance (`bool`):
whether to use classifier free guidance or not
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
"""
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
if prompt_embeds is None:
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
text_input_ids, untruncated_ids
):
removed_text = self.tokenizer.batch_decode(
untruncated_ids[:, self.tokenizer.model_max_length - 1: -1]
)
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
attention_mask = text_inputs.attention_mask.to(device)
else:
attention_mask = None
prompt_embeds = self.text_encoder(
text_input_ids.to(device),
attention_mask=attention_mask,
)
prompt_embeds = prompt_embeds[0]
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
bs_embed, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance and negative_prompt_embeds is None:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""] * batch_size
elif type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = negative_prompt
max_length = prompt_embeds.shape[1]
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
attention_mask = uncond_input.attention_mask.to(device)
else:
attention_mask = None
negative_prompt_embeds = self.text_encoder(
uncond_input.input_ids.to(device),
attention_mask=attention_mask,
)
negative_prompt_embeds = negative_prompt_embeds[0]
if do_classifier_free_guidance:
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = negative_prompt_embeds.shape[1]
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
return prompt_embeds
def load_img(path, target_size=512):
"""Load an image, resize and output -1..1"""
image = Image.open(path).convert("RGB")
tform = transforms.Compose(
[
transforms.Resize(target_size),
transforms.CenterCrop(target_size),
transforms.ToTensor(),
]
)
image = tform(image)
return 2.0 * image - 1.0
def latents_to_imgs(latents):
x = pipe.decode_image(latents)
x = pipe.torch_to_numpy(x)
x = pipe.numpy_to_pil(x)
return x
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", type=str)
parser.add_argument("--image_path", type=str)
parser.add_argument("--prompt", type=str)
parser.add_argument("--keyword", type=str)
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--scale", type=float, default=1)
args = parser.parse_args()
pipe = StableDiffusionPipeline.from_pretrained(args.model_path)
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe = pipe.to("cuda")
img = load_img(args.image_path).unsqueeze(0).to("cuda")
pipe2 = DDIMPipeline(
vae=pipe.vae,
text_encoder=pipe.text_encoder,
tokenizer=pipe.tokenizer,
unet=pipe.unet,
scheduler=pipe.scheduler,
safety_checker=pipe.safety_checker
)
pipe = pipe2
prompt = args.prompt
text_embeddings = pipe.get_text_embedding(prompt)
image_latents = pipe.get_image_latents(img, rng_generator=torch.Generator(device=pipe.device).manual_seed(args.seed))
reversed_latents = pipe.forward_diffusion(
latents=image_latents,
text_embeddings=text_embeddings,
guidance_scale=1,
num_inference_steps=50,
)
with torch.cuda.amp.autocast(dtype=torch.float16), torch.no_grad():
with trace(pipe) as tc:
reconstructed_latents = pipe.backward_diffusion(
latents=reversed_latents,
prompt=prompt,
guidance_scale=args.scale,
num_inference_steps=50,
)
img = latents_to_imgs(reconstructed_latents)[0]
img.save(f"{prompt}_{args.seed}_reconstruction.png")
heat_map = tc.compute_global_heat_map()
heat_map = heat_map.compute_word_heat_map(keyword)
heat_map.plot_overlay(img, out_file=f"{keyword}_heatmap_{args.seed}.png", word=None)
img.save(f"{prompt}_{args.seed}.png")