-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
1012 lines (893 loc) · 47.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import argparse
import itertools
import math
import os
import random
import json
from pathlib import Path
from typing import Optional
import numpy as np
import torch
import torch.nn.functional
import torch.nn.functional as F
import torch.utils.checkpoint
from torch.utils.data import Dataset
import PIL
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from diffusers.optimization import get_scheduler
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
from diffusers.utils.import_utils import is_xformers_available
from huggingface_hub import HfFolder, Repository, whoami
from diffusers import (
AutoencoderKL,
DDPMScheduler,
DiffusionPipeline,
DDIMScheduler,
StableDiffusionPipeline,
UNet2DConditionModel,
)
# TODO: remove and import from diffusers.utils when the new version of diffusers is released
from packaging import version
from PIL import Image
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
from datasets import ComposableDataset
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"):
PIL_INTERPOLATION = {
"linear": PIL.Image.Resampling.BILINEAR,
"bilinear": PIL.Image.Resampling.BILINEAR,
"bicubic": PIL.Image.Resampling.BICUBIC,
"lanczos": PIL.Image.Resampling.LANCZOS,
"nearest": PIL.Image.Resampling.NEAREST,
}
else:
PIL_INTERPOLATION = {
"linear": PIL.Image.LINEAR,
"bilinear": PIL.Image.BILINEAR,
"bicubic": PIL.Image.BICUBIC,
"lanczos": PIL.Image.LANCZOS,
"nearest": PIL.Image.NEAREST,
}
# ------------------------------------------------------------------------------
logger = get_logger(__name__)
def save_progress(text_encoder, placeholder_token_id, accelerator, args):
logger.info("Saving embeddings")
learned_embeds = accelerator.unwrap_model(text_encoder).get_input_embeddings().weight[placeholder_token_id]
learned_embeds_dict = {args.placeholder_tokens: learned_embeds.detach().cpu()}
if args.test:
embed_path = os.path.join(args.output_dir, "test_learned_embeds.bin")
else:
embed_path = os.path.join(args.output_dir, "learned_embeds.bin")
torch.save(learned_embeds_dict, embed_path)
def save_weights(weights, args):
logger.info("Saving embeddings")
learned_weights_dict = {"weights": weights.detach().cpu()}
if args.test:
weight_path = os.path.join(args.output_dir, "test_weights.bin")
else:
weight_path = os.path.join(args.output_dir, "weights.bin")
torch.save(learned_weights_dict, weight_path)
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--save_steps",
type=int,
default=500,
help="Save learned_embeds.bin every X updates steps.",
)
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default=None,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--tokenizer_name",
type=str,
default=None,
help="Pretrained tokenizer name or path if not the same as model_name",
)
parser.add_argument(
"--train_data_dir", type=str, required=True,
help="A list of folders containing the training data for each token provided."
)
parser.add_argument(
"--placeholder_tokens",
type=str,
required=True,
help="A list of tokens to use as placeholders for all the concepts, separated by comma",
)
parser.add_argument(
"--initializer_tokens", type=str, default="",
help="A list of tokens to use as initializer words, separated by comma"
)
parser.add_argument("--learnable_property", type=str, default="",
help="a list of properties for all the tokens needed to be learned, separated by comma")
parser.add_argument("--repeats", type=int, default=100, help="How many times to repeat the training data.")
parser.add_argument(
"--output_dir",
type=str,
default="checkpoints",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument(
"--resume_dir",
type=str,
default="",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument("--softmax_weights", action="store_true", default=False)
parser.add_argument("--reuse_weights", action="store_true", default=False)
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
parser.add_argument(
"--resolution",
type=int,
default=512,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument(
"--center_crop", action="store_true", help="Whether to center crop images before resizing to resolution"
)
parser.add_argument(
"--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
)
parser.add_argument("--num_train_epochs", type=int, default=100)
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--gradient_checkpointing",
action="store_true",
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=1e-4,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--scale_lr",
action="store_true",
default=True,
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
)
parser.add_argument(
"--lr_scheduler",
type=str,
default="constant",
help=(
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
' "constant", "constant_with_warmup"]'
),
)
parser.add_argument(
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
parser.add_argument(
"--hub_model_id",
type=str,
default=None,
help="The name of the repository to keep in sync with the local `output_dir`.",
)
parser.add_argument(
"--logging_dir",
type=str,
default="logs",
help=(
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
),
)
parser.add_argument(
"--mixed_precision",
type=str,
default="no",
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU."
),
)
parser.add_argument(
"--allow_tf32",
action="store_true",
help=(
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
),
)
parser.add_argument(
"--report_to",
type=str,
default="tensorboard",
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
),
)
parser.add_argument(
"--resume_from_checkpoint",
type=str,
default=None,
help=(
"Whether training should be resumed from a previous checkpoint. Use a path saved by"
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
),
)
parser.add_argument(
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
)
parser.add_argument(
"--use_composed_score", action="store_true", default=False,
help="whether to use composed score for textual inversion."
)
parser.add_argument(
"--use_orthogonal_loss", action="store_true", default=False,
help="should be enabled to get a better performance when using composed scores to invert text."
)
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
parser.add_argument(
"--checkpointing_steps",
type=int,
default=500,
help=(
"Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming"
" training using `--resume_from_checkpoint`."
),
)
parser.add_argument("--data", type=str, default="imagenet")
parser.add_argument("--class_folder_names", type=str,
help="a list of imagenet data folders for each class, seperate by comma")
parser.add_argument("--add_weight_per_score", action="store_true", default=False)
parser.add_argument("--freeze_weights", action="store_true", default=False)
parser.add_argument("--init_weight", type=float, default=1)
parser.add_argument("--use_conj_score", action="store_true", default=False)
parser.add_argument("--orthogonal_coeff", type=float, default=0.1)
parser.add_argument("--squared_orthogonal_loss", action="store_true", default=False)
parser.add_argument("--mse_coeff", type=float, default=1)
parser.add_argument("--num_images_per_class", type=int, default=-1, help="-1 means all images considered")
parser.add_argument("--weighted_sampling", action="store_true", default=False)
parser.add_argument("--flip_weights", action="store_true", default=False)
parser.add_argument("--text_loss", action="store_true", default=False)
parser.add_argument("--text_angle_loss", action="store_true", default=False)
parser.add_argument("--text_repulsion_loss", action="store_true", default=False)
parser.add_argument("--text_repulsion_similarity_loss", action="store_true", default=False)
parser.add_argument("--text_repulsion_coeff", type=float, default=0)
parser.add_argument("--euclidean_dist_loss", action="store_true", default=False)
parser.add_argument("--euclidean_dist_coeff", type=float, default=0)
parser.add_argument("--use_similarity", action="store_true", default=False,
help="Dot product between scores as the orthogonal loss")
parser.add_argument("--use_euclidean_mhe", action="store_true", default=False,
help="Minimum Hyperspherical Energy as the orthogonal loss")
parser.add_argument("--log_mhe", action="store_true", default=False)
parser.add_argument("--use_acos_mhe", action="store_true", default=False)
parser.add_argument("--normalize_score", action="store_true", default=False)
parser.add_argument("--use_weighted_score", action="store_true", default=False)
parser.add_argument("--use_l2_norm_regularization", action="store_true", default=False)
parser.add_argument("--l2_norm_coeff", type=float, default=0)
parser.add_argument("--normalize_word", action="store_true", default=False)
parser.add_argument("--num_iters_per_image", type=int, default=50)
parser.add_argument("--hsic_loss", action="store_true", default=False)
parser.add_argument("--test", action="store_true", default=False,
help="enable this by only optimizing weights using existing models.")
parser.add_argument(
"--validation_step",
type=int,
default=100,
help=(
"Run validation every X steps. Validation consists of running the prompt"
" `args.validation_prompt` multiple times: `args.num_validation_images`"
" and logging the images."
),
)
parser.add_argument(
"--revision",
type=str,
default=None,
required=False,
help="Revision of pretrained model identifier from huggingface.co/models.",
)
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
if args.train_data_dir is None:
raise ValueError("You must specify a train data directory.")
return args
def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None):
if token is None:
token = HfFolder.get_token()
if organization is None:
username = whoami(token)["name"]
return f"{username}/{model_id}"
else:
return f"{organization}/{model_id}"
def freeze_params(params):
for param in params:
param.requires_grad = False
def main():
args = parse_args()
logging_dir = os.path.join(args.output_dir, args.logging_dir)
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with="tensorboard",
logging_dir=logging_dir,
)
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Handle the repository creation
if accelerator.is_main_process:
if args.push_to_hub:
if args.hub_model_id is None:
repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
else:
repo_name = args.hub_model_id
repo = Repository(args.output_dir, clone_from=repo_name)
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
if "step_*" not in gitignore:
gitignore.write("step_*\n")
if "epoch_*" not in gitignore:
gitignore.write("epoch_*\n")
elif args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
if args.resume_from_checkpoint:
args.pretrained_model_name_or_path = args.resume_dir
print(f"resume everything from {args.pretrained_model_name_or_path}")
# Load the tokenizer and add the placeholder token as a additional special token
if args.tokenizer_name:
tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name)
elif args.pretrained_model_name_or_path:
tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer")
# Add the placeholder token in tokenizer
placeholder_tokens = [x.strip() for x in args.placeholder_tokens.split(",")]
num_added_tokens = tokenizer.add_tokens(placeholder_tokens)
if num_added_tokens != 0 and num_added_tokens != len(placeholder_tokens):
raise ValueError(
f"The tokenizer already contains at least one of the tokens in {placeholder_tokens}. "
f"Please pass a different placeholder_token` that is not already in the tokenizer."
)
# Convert the initializer_token, placeholder_token to ids
if args.initializer_tokens != "":
initializer_tokens = [x.strip() for x in args.initializer_tokens.split(",")]
else:
initializer_tokens = []
if len(initializer_tokens) == 0:
if args.resume_from_checkpoint:
logger.info("* Resume the embeddings of placeholder tokens *")
print("* Resume the embeddings of placeholder tokens *")
else:
logger.info("* Initialize the newly added placeholder token with the random embeddings *")
print("* Initialize the newly added placeholder token with the random embeddings *")
token_ids = tokenizer.convert_tokens_to_ids(placeholder_tokens)
else:
logger.info("* Initialize the newly added placeholder token with the embeddings of the initializer token *")
print("* Initialize the newly added placeholder token with the embeddings of the initializer token *")
token_ids = tokenizer.encode(initializer_tokens, add_special_tokens=False)
# Check if initializer_token is a single token or a sequence of tokens
if len(token_ids) > len(initializer_tokens):
raise ValueError("The initializer token must be a single token.")
initializer_token_ids = token_ids
placeholder_token_ids = tokenizer.convert_tokens_to_ids(placeholder_tokens)
# Load models and create wrapper for stable diffusion
text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder")
vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae")
unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet")
# Resize the token embeddings as we are adding new special tokens to the tokenizer
text_encoder.resize_token_embeddings(len(tokenizer))
# Initialise the newly added placeholder token with the embeddings of the initializer token
token_embeds = text_encoder.get_input_embeddings().weight.data
token_embeds[placeholder_token_ids] = token_embeds[initializer_token_ids]
if args.normalize_word:
token_embeds[placeholder_token_ids] = F.normalize(token_embeds[placeholder_token_ids], dim=1, p=2)
# Freeze vae and unet
freeze_params(vae.parameters())
freeze_params(unet.parameters())
# Freeze all parameters except for the token embeddings in text encoder
params_to_freeze = itertools.chain(
text_encoder.text_model.encoder.parameters(),
text_encoder.text_model.final_layer_norm.parameters(),
text_encoder.text_model.embeddings.position_embedding.parameters(),
text_encoder.get_input_embeddings().parameters() if args.test else []
)
freeze_params(params_to_freeze)
if args.gradient_checkpointing:
# Keep unet in train mode if we are using gradient checkpointing to save memory.
# The dropout cannot be != 0 so it doesn't matter if we are in eval or train mode.
unet.train()
text_encoder.gradient_checkpointing_enable()
unet.enable_gradient_checkpointing()
if args.enable_xformers_memory_efficient_attention:
if is_xformers_available():
unet.enable_xformers_memory_efficient_attention()
else:
raise ValueError("xformers is not available. Make sure it is installed correctly")
# Enable TF32 for faster training on Ampere GPUs,
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
if args.allow_tf32:
torch.backends.cuda.matmul.allow_tf32 = True
if args.scale_lr:
args.learning_rate = (
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
)
train_dataset = ComposableDataset(
data_root=args.train_data_dir,
tokenizer=tokenizer,
size=args.resolution,
repeats=args.repeats,
center_crop=args.center_crop,
placeholder_tokens=args.placeholder_tokens,
num_images_per_class=args.num_images_per_class,
class_folder_names=args.class_folder_names,
learnable_property=args.learnable_property,
set="train" if not args.test else "val",
)
if args.add_weight_per_score:
# Add a learnable weight for each token
if args.resume_from_checkpoint and args.reuse_weights:
weight_path = os.path.join(args.resume_dir, "weights.bin")
concept_weights = torch.load(weight_path)["weights"]
concept_weights.requires_grad = not args.freeze_weights
concept_weights = torch.nn.Parameter(concept_weights, requires_grad=not args.freeze_weights)
print('reusing the weights...')
else:
num_tokens = len(placeholder_token_ids)
# create weight matrix NxMx1x1x1 where D is the number of images and M is the number of classes
concept_weights = torch.tensor([args.init_weight] * num_tokens).reshape(1, -1, 1, 1, 1).float()
if args.softmax_weights:
concept_weights = F.softmax(concept_weights, dim=1)
concept_weights = concept_weights.repeat(train_dataset.num_images, 1, 1, 1, 1)
concept_weights.requires_grad = not args.freeze_weights
concept_weights = torch.nn.Parameter(concept_weights, requires_grad=not args.freeze_weights)
# Initialize the optimizer
optimizer = torch.optim.AdamW(
itertools.chain(
text_encoder.get_input_embeddings().parameters() if not args.test else [],
[concept_weights] if args.add_weight_per_score else []
),
lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=args.train_batch_size, shuffle=True)
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
num_training_steps=args.max_train_steps * args.gradient_accumulation_steps,
)
text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
text_encoder, optimizer, train_dataloader, lr_scheduler
)
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
# Move vae and unet to device
vae.to(accelerator.device, dtype=weight_dtype)
unet.to(accelerator.device, dtype=weight_dtype)
args.max_train_steps = train_dataset.num_images * args.num_iters_per_image
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if overrode_max_train_steps:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
# Afterwards we recalculate our number of training epochs
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if accelerator.is_main_process:
accelerator.init_trackers("checkpoints", config=vars(args))
# Train!
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
print(f'total_batch_size: {total_batch_size}')
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
global_step = 0
first_epoch = 0
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
if args.resume_from_checkpoint != "latest":
path = os.path.basename(args.resume_from_checkpoint)
else:
# Get the most recent checkpoint
dirs = os.listdir(args.resume_dir)
dirs = [d for d in dirs if d.startswith("checkpoint")]
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
path = dirs[-1] if len(dirs) > 0 else None
if path is None:
accelerator.print(
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
)
args.resume_from_checkpoint = None
args.max_train_steps = train_dataset.num_images * args.num_iters_per_image
else:
if not args.test:
accelerator.print(f"Resuming from checkpoint {path}")
accelerator.load_state(os.path.join(args.resume_dir, path))
global_step = int(path.split("-")[1])
resume_global_step = global_step * args.gradient_accumulation_steps
first_epoch = global_step // num_update_steps_per_epoch
resume_step = resume_global_step % (num_update_steps_per_epoch * args.gradient_accumulation_steps)
# update the number of iterations
args.max_train_steps = global_step + train_dataset.num_images * args.num_iters_per_image
# Afterwards we recalculate our number of training epochs
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(global_step, args.max_train_steps), disable=not accelerator.is_local_main_process)
progress_bar.set_description("Steps")
# keep original embeddings as reference
orig_embeds_params = accelerator.unwrap_model(text_encoder).get_input_embeddings().weight.data.clone()
# iterate through the data and save dataset info
dataset_info = {}
for step, batch in enumerate(train_dataloader):
image_path = batch["image_path"]
image_idx = batch["image_index"]
for i in range(len(image_path)):
dataset_info[image_idx[i].item()] = image_path[i]
if args.test:
path = os.path.join(args.output_dir, "test_dataset_info.json")
else:
path = os.path.join(args.output_dir, "dataset_info.json")
with open(path, "w") as f:
json.dump(dataset_info, f)
for epoch in range(first_epoch, args.num_train_epochs):
text_encoder.train()
for step, batch in enumerate(train_dataloader):
# # Skip steps until we reach the resumed step
if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step:
if step % args.gradient_accumulation_steps == 0:
progress_bar.update(1)
continue
mse_loss, orthogonal_loss, repulsion_loss, word_norm_loss, euclidean_dist_loss = 0, 0, 0, 0, 0
with accelerator.accumulate(text_encoder):
# image shape: Bx3xHxW
# input_ids shape: BxMxD where M is the number of classes, D is the text dims
pixel_value, input_ids = batch["pixel_values"], batch["input_ids"]
weight_id = batch["gt_weight_id"]
# split input ids into a list of BxD
input_ids_list = [y.squeeze(dim=1) for y in input_ids.chunk(chunks=input_ids.shape[1], dim=1)]
if args.use_composed_score:
noise, uncond_noise_pred, noise_preds = None, None, []
for input_ids in input_ids_list:
# Convert images to latent space
latents = vae.encode(pixel_value).latent_dist.sample().detach()
latents = latents * 0.18215
# Sample noise that we'll add to the latents
if noise is None:
noise = torch.randn(latents.shape).to(latents.device)
bsz = latents.shape[0]
# Sample a random timestep for each image
if args.weighted_sampling:
weights = torch.arange(1, noise_scheduler.config.num_train_timesteps + 1).float()
if args.flip_weights:
weights = weights.flip(dims=(0,))
timesteps = torch.multinomial(weights, bsz).to(latents.device)
else:
timesteps = torch.randint(
0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device
).long()
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
# Get the text embedding for conditioning
encoder_hidden_states = text_encoder(input_ids)[0]
# Predict the noise residual
noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
noise_preds.append(noise_pred)
if uncond_noise_pred is None and args.use_conj_score:
# precompute the unconditional text hidden states
uncond_text_ids = tokenizer(
"",
padding="max_length",
truncation=True,
max_length=tokenizer.model_max_length,
return_tensors="pt",
).input_ids.to(latents.device)
B = noisy_latents.shape[0]
uncond_encoder_hidden_states = text_encoder(uncond_text_ids)[0].repeat(B, 1, 1)
uncond_noise_pred = unet(noisy_latents, timesteps, uncond_encoder_hidden_states).sample
noise_preds_stack = torch.stack(noise_preds, dim=1) # BxMx4x64x64
elif args.use_conj_score:
# latents
latents = vae.encode(pixel_value).latent_dist.sample().detach()
latents = latents * 0.18215
bsz = latents.shape[0]
noise = torch.randn_like(latents)
timesteps = torch.randint(
0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device
).long()
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
weights = concept_weights[weight_id]
cond_scores = []
for input_ids in input_ids_list:
encoder_hidden_state = text_encoder(input_ids)[0].to(dtype=weight_dtype)
cond_scores.append(unet(noisy_latents, timesteps, encoder_hidden_state).sample)
cond_scores = torch.stack(cond_scores, dim=1)
uncond_text_ids = tokenizer(
"",
padding="max_length",
truncation=True,
max_length=tokenizer.model_max_length,
return_tensors="pt",
).input_ids.to(latents.device)
uncond_encoder_hidden_states = text_encoder(uncond_text_ids)[0].repeat(bsz, 1, 1)
uncond_score = unet(noisy_latents, timesteps, uncond_encoder_hidden_states).sample
# compute initial compositional score
composed_score = uncond_score + torch.sum(weights.to(latents.device) * (cond_scores - uncond_score[:, None]), dim=1)
# encoder_hidden_states = torch.stack(encoder_hidden_states_list, dim=1)
# gt_encoder_states = (encoder_hidden_states * weights.to(latents.device)).sum(dim=1)
mse_loss = args.mse_coeff * F.mse_loss(noise, composed_score.float(), reduction="mean")
# orthogonal loss
if args.use_orthogonal_loss:
if args.use_similarity:
B, M, C, H, W = cond_scores.shape
ortho_scores_view = cond_scores.view(B, M, -1)
prod_matrix = torch.bmm(ortho_scores_view, ortho_scores_view.transpose(2, 1)) / (C * H * W)
# only compute the upper triangular matrices (exclude the diagonal)
r, c = torch.triu_indices(M, M, offset=1)
orthogonal_loss = args.orthogonal_coeff * (prod_matrix[:, r, c] ** 2).sum().sqrt()
elif args.use_euclidean_mhe:
B, M, C, H, W = cond_scores.shape
ortho_scores_view = cond_scores.view(B, M, -1)
batch_pair_wise_l2_dist = torch.cdist(ortho_scores_view, ortho_scores_view, p=2.0)
# only compute the upper triangular matrices (exclude the diagonal)
energy_matrix = torch.triu(batch_pair_wise_l2_dist, diagonal=1)
energy_matrix = energy_matrix[energy_matrix != 0]
if args.log_mhe:
orthogonal_loss = torch.log(1 / energy_matrix).mean()
else:
orthogonal_loss = (1 / energy_matrix).mean()
orthogonal_loss *= args.orthogonal_coeff
if args.text_loss:
word_embeds = accelerator.unwrap_model(text_encoder).get_input_embeddings().weight[
placeholder_token_ids]
if args.text_repulsion_loss:
if args.use_l2_norm_regularization:
# word embeds are unnormalized.
word_norm_loss = args.l2_norm_coeff * torch.norm(word_embeds, dim=1).mean(dim=0)
if args.normalize_score:
word_embeds = F.normalize(word_embeds, p=2, dim=1)
word_dist_matrix = F.pdist(word_embeds, p=2)
repulsion_loss = args.text_repulsion_coeff * torch.log(1 / word_dist_matrix).mean()
elif args.text_repulsion_similarity_loss:
num_words = word_embeds.shape[0]
similarity = word_embeds @ word_embeds.T
similarity = similarity[torch.triu_indices(num_words, num_words, offset=1).unbind()] ** 2.
repulsion_loss = args.text_repulsion_coeff * similarity.sum().sqrt()
if args.use_composed_score:
# extract the corresponding weights for the batch of images
if args.add_weight_per_score:
weights = concept_weights[weight_id]
if args.softmax_weights:
weights = F.softmax(concept_weights[weight_id], dim=1)
weighted_scores = noise_preds_stack * weights.to(latents.device)
else:
weighted_scores = noise_preds_stack / noise_preds_stack.shape[1]
if args.use_conj_score:
uncond_noise_pred = uncond_noise_pred[:, None]
score = uncond_noise_pred + weights.to(latents.device) * (noise_preds_stack - uncond_noise_pred)
composed_score = score.sum(dim=1)
else:
composed_score = weighted_scores.sum(dim=1)
# TODO: MSE between classifier free score and noise doesn't make sense??
mse_loss = args.mse_coeff * F.mse_loss(composed_score, noise, reduction="mean")
# compute sum of pair wise dot product as the orthogonal loss
if args.use_orthogonal_loss:
if args.use_weighted_score:
ortho_scores = weighted_scores
else:
ortho_scores = noise_preds_stack
# assume number of classes: B > 1
B, M, C, H, W = ortho_scores.shape
ortho_scores_view = ortho_scores.view(B, M, -1)
if args.normalize_score:
ortho_scores_view = F.normalize(ortho_scores_view, p=2, dim=2)
if args.use_similarity:
prod_matrix = torch.bmm(ortho_scores_view, ortho_scores_view.transpose(2, 1))
# only compute the upper triangular matrices (exclude the diagonal)
num_pairs = math.factorial(M) / (math.factorial(2) * math.factorial(M - 2))
ortho_matrix = (torch.triu(prod_matrix, diagonal=1) / (B * C * H * W))
orthogonal_loss = args.orthogonal_coeff * ortho_matrix.sum() / num_pairs
# r, c = torch.triu_indices(M, M, offset=1).unbind()
# orthogonal_loss = args.orthogonal_coeff * (prod_matrix[:, r, c]).mean()
elif args.use_euclidean_mhe:
# Minimum Hyperspherical energy: norm
# scale * sum_i^{N}sum_j^{N}_{i!=j} log(||w_i - w_j|| ** -
batch_pair_wise_l2_dist = torch.cdist(ortho_scores_view, ortho_scores_view, p=2.0)
# only compute the upper triangular matrices (exclude the diagonal)
energy_matrix = torch.triu(batch_pair_wise_l2_dist, diagonal=1)
energy_matrix = energy_matrix[energy_matrix != 0]
orthogonal_loss = torch.log(1 / energy_matrix).mean()
orthogonal_loss *= args.orthogonal_coeff
elif args.use_acos_mhe:
prod_matrix_1 = torch.bmm(ortho_scores_view, ortho_scores_view.transpose(2, 1))
energy_matrix = torch.triu(prod_matrix_1, diagonal=1)
energy_matrix = energy_matrix[energy_matrix != 0][..., None]
energy_matrix = torch.acos(energy_matrix)
orthogonal_loss = torch.log(1 / energy_matrix).sum(dim=energy_matrix.shape[1:]).mean(dim=0)
orthogonal_loss *= args.orthogonal_coeff
else:
raise NotImplementedError
if args.text_loss:
word_embeds = accelerator.unwrap_model(text_encoder).get_input_embeddings().weight[
placeholder_token_ids]
if args.text_repulsion_loss:
if args.use_l2_norm_regularization:
# word embeds are unnormalized.
word_norm_loss = args.l2_norm_coeff * torch.norm(word_embeds, dim=1).mean(dim=0)
if args.normalize_score:
word_embeds = F.normalize(word_embeds, p=2, dim=1)
word_dist_matrix = F.pdist(word_embeds, p=2)
repulsion_loss = args.text_repulsion_coeff * torch.log(1 / word_dist_matrix).mean()
elif args.text_repulsion_similarity_loss:
if args.use_l2_norm_regularization:
# word embeds are unnormalized.
word_norm_loss = args.l2_norm_coeff * torch.norm(word_embeds, dim=1).mean(dim=0)
N = word_embeds.shape[0]
similarity = word_embeds @ word_embeds.T
similarity = similarity[torch.triu_indices(N, N, offset=1).unbind()] ** 2.
repulsion_loss = args.text_repulsion_coeff * similarity.mean()
if args.euclidean_dist_loss:
word_embeds = accelerator.unwrap_model(text_encoder).get_input_embeddings().weight[
placeholder_token_ids]
euclidean_dist_loss = args.euclidean_dist_coeff * (1 / F.pdist(word_embeds, p=2)).mean()
loss = mse_loss + orthogonal_loss + repulsion_loss + word_norm_loss + euclidean_dist_loss
accelerator.backward(loss)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# Let's make sure we don't update any embedding weights besides the newly added token
if not args.test:
index_no_updates = torch.ones(len(tokenizer), dtype=torch.bool)
index_no_updates[placeholder_token_ids] = False
if accelerator.num_processes > 1:
grads = text_encoder.module.get_input_embeddings().weight.grad
else:
grads = text_encoder.get_input_embeddings().weight.grad
# optimize all newly added tokens
grads.data[index_no_updates, :] = grads.data[index_no_updates, :].fill_(0)
with torch.no_grad():
accelerator.unwrap_model(text_encoder).get_input_embeddings().weight[
index_no_updates
] = orig_embeds_params[index_no_updates]
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
if global_step % args.save_steps == 0:
save_progress(text_encoder, initializer_token_ids, accelerator, args)
if args.add_weight_per_score:
save_weights(concept_weights, args)
if global_step % args.checkpointing_steps == 0:
if accelerator.is_main_process:
if not args.test:
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
accelerator.save_state(save_path)
logger.info(f"Saved state to {save_path}")
logs = {"loss": loss.detach().item(),
"lr": lr_scheduler.get_last_lr()[0],
"mse_loss": mse_loss.item(),
"ortho_loss": orthogonal_loss.item() if args.use_orthogonal_loss else 0,
"word_repulsion_loss": repulsion_loss.item() if args.text_loss else 0,
"euclidean_dist_loss": euclidean_dist_loss.item() if args.euclidean_dist_loss else 0,
"word_norm_regularization": word_norm_loss.item() if args.use_l2_norm_regularization else 0,
}
progress_bar.set_postfix(**logs)
accelerator.log(logs, step=global_step)
if global_step >= args.max_train_steps:
break
if accelerator.sync_gradients and global_step % args.validation_step == 0:
folder = os.path.join(args.output_dir, f'generated_samples_{global_step}')
os.makedirs(folder, exist_ok=True)
logger.info(
f"Running validation..."
)
# create pipeline (note: unet and vae are loaded again in float32)
pipeline = DiffusionPipeline.from_pretrained(
args.pretrained_model_name_or_path,
text_encoder=accelerator.unwrap_model(text_encoder),
tokenizer=tokenizer,
unet=unet,
vae=vae,
revision=args.revision,
torch_dtype=weight_dtype,
)
pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config)
pipeline = pipeline.to(accelerator.device)
pipeline.set_progress_bar_config(disable=True)
# run inference
generator = (
None if args.seed is None else
torch.Generator(device=accelerator.device).manual_seed(args.seed)
)
images = []
prompts = []
if args.learnable_property != "":
properties = [x.strip() for x in args.learnable_property.split(",")]
else:
properties = []
if properties:
for p, placeholder in zip(properties, placeholder_tokens):
if p == "object":
prompts.append(f"a photo of {placeholder}")
else:
prompts.append(f"a painting in the style of {placeholder}")
else:
for placeholder in placeholder_tokens:
prompts.append(f"{placeholder}")
for prompt in prompts:
image_list = pipeline(prompt, guidance_scale=7.5,
num_inference_steps=50, generator=generator)
image = image_list.images[0]
image.save(os.path.join(folder, f'{prompt}.png'))
images.append(image)
for tracker in accelerator.trackers:
if tracker.name == "tensorboard":
np_images = np.stack([np.asarray(img) for img in images])
tracker.writer.add_images("validation", np_images, epoch, dataformats="NHWC")
del pipeline
torch.cuda.empty_cache()
accelerator.wait_for_everyone()
# Create the pipeline using the trained modules and save it.
if accelerator.is_main_process and global_step % args.checkpointing_steps == 0 and not args.test:
pipeline = StableDiffusionPipeline.from_pretrained(
args.pretrained_model_name_or_path,
text_encoder=accelerator.unwrap_model(text_encoder),
vae=vae,
unet=unet,
tokenizer=tokenizer,
)
pipeline.save_pretrained(args.output_dir)
# Also save the newly trained embeddings
save_progress(text_encoder, initializer_token_ids, accelerator, args)
if args.add_weight_per_score:
save_weights(concept_weights, args)