-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproc_avp_ascii_met.py
348 lines (306 loc) · 11 KB
/
proc_avp_ascii_met.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
#!/usr/bin/env python
# Last modified: Time-stamp: <2010-12-09 16:15:23 haines>
"""
how to parse data, and assert what data and info goes into
creating and updating monthly netcdf files
parser : output delimited ASCII file from onsite perl script
creator : lat, lon, z, time, wspd, wdir, cdir, u, v, nwnd
updater : time, wspd, wdir, cdir, u, v, nwnd
Examples
--------
>> (parse, create, update) = load_processors('proc_avp_ascii_wnd')
or
>> si = get_config(cn+'.sensor_info')
>> (parse, create, update) = load_processors(si['met']['proc_module'])
>> lines = load_data(filename)
>> data = parse(platform_info, sensor_info, lines)
>> create(platform_info, sensor_info, data) or
>> update(platform_info, sensor_info, data)
"""
from raw2proc import *
from procutil import *
from ncutil import *
import time
now_dt = datetime.utcnow()
now_dt.replace(microsecond=0)
def parser(platform_info, sensor_info, lines):
"""
parse Automated Vertical Profile Station (AVP) Wind data
Notes
-----
1. Wind:
Date, time, speed, dir, compass dir, North , East, n-samples
(m/s) (magN) (magN) (m/s) (m/s)
08/11/2008 00:00:00 5.881 197 197 -5.638 -1.674 696
08/11/2008 00:30:00 5.506 216 197 -4.448 -3.246 699
08/11/2008 01:00:00 7.233 329 159 6.183 -3.754 705
"""
import numpy
from datetime import datetime
from time import strptime
# get sample datetime from filename
fn = sensor_info['fn']
sample_dt_start = filt_datetime(fn)
# if line has weird ascii chars -- remove it
for index, line in enumerate(lines):
if re.search(r"[\x1a]", line):
# print '... ... remove unexpected ... ' + str(line)
lines.pop(index)
lines.sort()
N = len(lines)
data = {
'dt' : numpy.array(numpy.ones((N,), dtype=object)*numpy.nan),
'time' : numpy.array(numpy.ones((N,), dtype=long)*numpy.nan),
'wspd' : numpy.array(numpy.ones((N,), dtype=float)*numpy.nan),
'wdir' : numpy.array(numpy.ones((N,), dtype=float)*numpy.nan),
'cdir' : numpy.array(numpy.ones((N,), dtype=float)*numpy.nan),
'v' : numpy.array(numpy.ones((N,), dtype=float)*numpy.nan),
'u' : numpy.array(numpy.ones((N,), dtype=float)*numpy.nan),
'nwnd' : numpy.array(numpy.ones((N,), dtype=int)*numpy.nan),
}
i = 0
mvar = platform_info['mvar'] # Magnetic Variation at station
for line in lines:
# if line has weird ascii chars -- skip it and iterate to next line
if re.search(r"[\x1a]", line):
print 'skipping bad data line ... ' + str(line)
continue
wnd = []
# split line and parse float and integers
sw = re.split('[\s\/\:]*', line)
for s in sw:
m = re.search(REAL_RE_STR, s)
if m:
wnd.append(float(m.groups()[0]))
if len(wnd)>=11:
# get sample datetime from data
sample_str = '%02d-%02d-%4d %02d:%02d:%02d' % tuple(wnd[0:6])
if sensor_info['utc_offset']:
sample_dt = scanf_datetime(sample_str, fmt='%m-%d-%Y %H:%M:%S') + \
timedelta(hours=sensor_info['utc_offset'])
else:
sample_dt = scanf_datetime(sample_str, fmt='%m-%d-%Y %H:%M:%S')
wspd = int(wnd[6]) # wind speed (m/s)
wdir = int(wnd[7]) # wind dir (mag N)
cdir = wnd[8] # compass dir (mag N)
u = wnd[9] # Easterly (?) Component (m/s) (mag or true??)
v = wnd[10] # Northerly (?) Component (m/s) (mag or true??)
if len(wnd)>=12:
nwnd = int(wnd[11])
else:
nwnd = numpy.nan # Number of samples in wind average
# prior to Sep 2008 number of samples were not recorded
# combine wind dir and buoy compass direction
# correct direction from magnetic N to true N
# rotate u, v to true N
# or
# recompute u, v from direction and speed
data['dt'][i] = sample_dt # sample datetime
data['time'][i] = dt2es(sample_dt) # sample time in epoch seconds
data['wspd'][i] = wspd
data['wdir'][i] = wdir
data['cdir'][i] = cdir
data['u'][i] = u
data['v'][i] = v
data['nwnd'][i] = nwnd
i=i+1
# if len(wnd)>=11
# for line
return data
def creator(platform_info, sensor_info, data):
#
# subset data only to month being processed (see raw2proc.process())
i = data['in']
dt = data['dt'][i]
#
title_str = sensor_info['description']+' at '+ platform_info['location']
global_atts = {
'title' : title_str,
'institution' : 'University of North Carolina at Chapel Hill (UNC-CH)',
'institution_url' : 'http://nccoos.org',
'institution_dods_url' : 'http://nccoos.org',
'metadata_url' : 'http://nccoos.org',
'references' : 'http://nccoos.org',
'contact' : 'Sara Haines ([email protected])',
#
'source' : 'AVP Wind Observations',
'history' : 'raw2proc using ' + sensor_info['process_module'],
'comment' : 'File created using pycdf'+pycdfVersion()+' and numpy '+pycdfArrayPkg(),
# conventions
'Conventions' : 'CF-1.0; SEACOOS-CDL-v2.0',
# SEACOOS CDL codes
'format_category_code' : 'fixed-point',
'institution_code' : platform_info['institution'],
'platform_code' : platform_info['id'],
'package_code' : sensor_info['id'],
# institution specific
'project' : 'North Carolina Coastal Ocean Observing System (NCCOOS)',
'project_url' : 'http://nccoos.org',
# timeframe of data contained in file yyyy-mm-dd HH:MM:SS
'start_date' : dt[0].strftime("%Y-%m-%d %H:%M:%S"),
'end_date' : dt[-1].strftime("%Y-%m-%d %H:%M:%S"),
'release_date' : now_dt.strftime("%Y-%m-%d %H:%M:%S"),
#
'creation_date' : now_dt.strftime("%Y-%m-%d %H:%M:%S"),
'modification_date' : now_dt.strftime("%Y-%m-%d %H:%M:%S"),
'process_level' : 'level1',
#
# must type match to data (e.g. fillvalue is real if data is real)
'_FillValue' : numpy.nan,
}
var_atts = {
# coordinate variables
'time' : {'short_name': 'time',
'long_name': 'Sample Time',
'standard_name': 'time',
'units': 'seconds since 1970-1-1 00:00:00 -0', # UTC
'axis': 'T',
},
'lat' : {'short_name': 'lat',
'long_name': 'Latitude in Decimal Degrees',
'standard_name': 'latitude',
'reference':'geographic coordinates',
'units': 'degrees_north',
'valid_range':(-90.,90.),
'axis': 'Y',
},
'lon' : {'short_name': 'lon',
'long_name': 'Longitude in Decimal Degrees',
'standard_name': 'longitude',
'reference':'geographic coordinates',
'units': 'degrees_east',
'valid_range':(-180.,180.),
'axis': 'Y',
},
'z' : {'short_name': 'z',
'long_name': 'Height',
'standard_name': 'height',
'reference':'zero at sea-surface',
'positive': 'up',
'units': 'm',
'axis': 'Z',
},
# data variables
'wspd' : {'short_name': 'wspd',
'long_name': 'Wind Speed',
'standard_name': 'wind_speed',
'units': 'm s-1',
'can_be_normalized': 'no',
'z' : sensor_info['anemometer_height'],
},
'wdir' : {'short_name': 'wdir',
'long_name': 'Wind Direction from',
'standard_name': 'wind_from_direction',
'reference': 'clockwise from Magnetic North',
'valid_range': (0., 360),
'units': 'degrees',
'z' : sensor_info['anemometer_height'],
},
'cdir' : {'short_name': 'cdir',
'long_name': 'Buoy Orientation',
'standard_name': 'compass_direction',
'reference': 'clockwise from Magnetic North',
'valid_range': (0., 360),
'units': 'degrees',
},
'u' : {'short_name': 'u',
'long_name': 'East/West Component of Wind',
'standard_name': 'eastward_wind',
'reference': 'relative to True East (?)',
'units': 'm s-1',
'can_be_normalized': 'no',
'z' : sensor_info['anemometer_height'],
},
'v' : {'short_name': 'v',
'long_name': 'North/South Component of Wind',
'standard_name': 'northward_wind',
'reference': 'relative to True North (?)',
'units': 'm s-1',
'can_be_normalized': 'no',
'z' : sensor_info['anemometer_height'],
},
'nwnd' : {'short_name': 'nwnd',
'long_name': 'Number of wind samples in sample period',
'standard_name': 'number_of_samples',
'units': '',
},
}
# dimension names use tuple so order of initialization is maintained
dim_inits = (
('time', NC.UNLIMITED),
('lat', 1),
('lon', 1),
('z', 1)
)
# using tuple of tuples so order of initialization is maintained
# using dict for attributes order of init not important
# use dimension names not values
# (varName, varType, (dimName1, [dimName2], ...))
var_inits = (
# coordinate variables
('time', NC.INT, ('time',)),
('lat', NC.FLOAT, ('lat',)),
('lon', NC.FLOAT, ('lon',)),
('z', NC.FLOAT, ('z',)),
# data variables
('wspd', NC.FLOAT, ('time',)),
('wdir', NC.FLOAT, ('time',)),
('cdir', NC.FLOAT, ('time',)),
('u', NC.FLOAT, ('time',)),
('v', NC.FLOAT, ('time',)),
('nwnd', NC.FLOAT, ('time',)),
)
# var data
var_data = (
('lat', platform_info['lat']),
('lon', platform_info['lon']),
('z', sensor_info['anemometer_height']),
#
('time', data['time'][i]),
('wspd', data['wspd'][i]),
('wdir', data['wdir'][i]),
('cdir', data['cdir'][i]),
('u', data['u'][i]),
('v', data['v'][i]),
('nwnd', data['nwnd'][i]),
)
return (global_atts, var_atts, dim_inits, var_inits, var_data)
def updater(platform_info, sensor_info, data):
#
# subset data only to month being processed (see raw2proc.process())
i = data['in']
dt = data['dt'][i]
#
global_atts = {
# update times of data contained in file (yyyy-mm-dd HH:MM:SS)
# last date in monthly file
'end_date' : dt[-1].strftime("%Y-%m-%d %H:%M:%S"),
'release_date' : now_dt.strftime("%Y-%m-%d %H:%M:%S"),
#
'modification_date' : now_dt.strftime("%Y-%m-%d %H:%M:%S"),
}
# data variables
# update any variable attributes like range, min, max
var_atts = {}
# var_atts = {
# 'u': {'max': max(data.u),
# 'min': min(data.v),
# },
# 'v': {'max': max(data.u),
# 'min': min(data.v),
# },
# }
# subset data only to month being processed (see raw2proc.process())
i = data['in']
# data
var_data = (
('time', data['time'][i]),
('wspd', data['wspd'][i]),
('wdir', data['wdir'][i]),
('cdir', data['cdir'][i]),
('u', data['u'][i]),
('v', data['v'][i]),
('nwnd', data['nwnd'][i]),
)
return (global_atts, var_atts, var_data)
#