-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproc_codar_totals.py
320 lines (281 loc) · 11.1 KB
/
proc_codar_totals.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
#!/usr/bin/env python
# Last modified: Time-stamp: <2013-04-30 16:27:48 haines>
"""
how to parse data, and assert what data and info goes into
creating and updating monthly netcdf files
CODAR SeaSonde Total Sea Surface Currents (LLUV TOT4)
parser : sample date and time from header (%TimeStamp:)
table time version (%TableType:)
creator : lat, lon, z, time, u(time, lat, lon), v(time, lat, lon),
updater : time, u(time, lat, lon), v(time, lat, lon),
Check that grid that totals are calculated over has not changed.
(%Origin, %GridAxis, %GridAxisType, %GridSpacing all the same)
Examples
--------
>> (parse, create, update) = load_processors(module_name_without_dot_py)
For example,
>> (parse, create, update) = load_processors('proc_rdi_logdata_adcp')
or
>> si = get_config(cn+'.sensor_info')
>> (parse, create, update) = load_processors(si['adcp']['proc_module'])
Then use the generic name of processor to parse data, create or update
monthly output file
>> lines = load_data(filename)
>> data = parse(platform_info, sensor_info, lines)
>> create(platform_info, sensor_info, data)
or
>> update(platform_info, sensor_info, data)
"""
from raw2proc import *
from procutil import *
from ncutil import *
now_dt = datetime.utcnow()
now_dt.replace(microsecond=0)
def parser(platform_info, sensor_info, lines):
"""
parse and assign data to variables from CODAR Totals LLUV format
Notes
-----
1. Requires grid definition obtained from sensor_info
For best coverage of totals, this includes overlapping foot print of HATY, DUCK, LISL and CEDR
"""
import numpy
from datetime import datetime
from time import strptime
from StringIO import StringIO
from matplotlib.mlab import griddata
# define the lat/lon grid based on 6km resolution
minlat, maxlat = platform_info['lat'] # (34.5, 38)
minlon, maxlon = platform_info['lon'] # (-76, -73.)
nlat = platform_info['nlat']
nlon = platform_info['nlon']
yi = numpy.linspace(minlat, maxlat, nlat)
xi = numpy.linspace(minlon, maxlon, nlon)
xmesh, ymesh = numpy.meshgrid(xi, yi)
data = {
'dt' : numpy.array(numpy.ones((1,), dtype=object)*numpy.nan),
'time' : numpy.array(numpy.ones((1,), dtype=long)*numpy.nan),
'lon' : numpy.array(numpy.ones((nlon,), dtype=float)*numpy.nan),
'lat' : numpy.array(numpy.ones((nlat,), dtype=float)*numpy.nan),
'u' : numpy.array(numpy.ones((1,nlon,nlat), dtype=float)*numpy.nan),
'v' : numpy.array(numpy.ones((1,nlon,nlat), dtype=float)*numpy.nan),
}
sample_dt, ftype, lluvspec, ncol, nrow = (None, None, None, None, None)
# read header that match '%(k): (v)\n' pairs on each line
m = re.findall(r'^(%.*):\s*(.*)$', ''.join(lines), re.MULTILINE)
for k,v in m:
if k == '%TimeStamp':
sample_dt = scanf_datetime(v, fmt='%Y %m %d %H %M %S')
elif k == '%TableType':
ftype = v
elif k == '%LLUVSpec':
lluvspec = float(re.split('\s+', v)[0])
elif k == '%TableColumns':
ncol = int(v)
elif k == '%TableRows':
nrow = int(v)
elif k == '%TableEnd':
break
# LLUVSpec 1.17 and greater has two tables bracketed by TableStart and TableEnd
# get out of this search loop after the first table
if nrow>2:
# read data from string of lines but make it behave like a file object with StringIO
s = StringIO(''.join(lines))
s.seek(0) # ensures start posn of file
d = numpy.loadtxt(s, comments='%')
# lat, lon, u, v = numpy.loadtxt(s, usecols=(0,1,2,3), comments='%', unpack=True)
if 'TOT4' in ftype:
lon = d[:,0]
lat = d[:,1]
wu = d[:,2]
wv = d[:,3]
gridflag = d[:,4]
wu_std_qual = d[:,5]
wv_std_qual = d[:,6]
cov_qual = d[:,7]
x_dist = d[:,8]
y_dist = d[:,9]
rang = d[:,10]
bearing = d[:,11]
vel_mag = d[:,12]
vel_dir = d[:,13]
# ibad = (wu_std_qual==999.) | (wv_std_qual==999.) | (cov_qual==999.)
# wu[ibad] = numpy.nan
# wv[ibad] = numpy.nan
# SMH -- April 26, 2013 -- commenting out these columns for now until figure out how to handle
# new dynamic form of LLUVSpec 1.17 in TOT4 format, prior versions were static with 6 fields
# will have to use %LLUVSpec header info and second table at bottom of file to get dynamic ncols
# s1 = d[:,14]
# s2 = d[:,15]
# s3 = d[:,16]
# s4 = d[:,17]
# s5 = d[:,18]
# s6 = d[:,19]
try:
uim = griddata(lon, lat, wu, xmesh, ymesh)
vim = griddata(lon, lat, wv, xmesh, ymesh)
# returned masked array as an ndarray with masked values filled with fill_value
ui = uim.filled(fill_value=numpy.nan)
vi = vim.filled(fill_value=numpy.nan)
# print ui.shape
except IndexError:
print "raw2proc: IndexError in griddata() -- skipping data"
# ---------------------------------------------------------------
i = 0
data['dt'][i] = sample_dt #
data['time'][i] = dt2es(sample_dt) #
data['lon'] = xi # new longitude grid
data['lat'] = yi # new latitude grid
if nrow and nrow>2:
# use transpose so order is (time, x, y) for netcdf convention
data['u'][i] = ui.T # u-component of water velocity (cm/s)
data['v'][i] = vi.T # v-component of water velocity
return data
def creator(platform_info, sensor_info, data):
#
#
title_str = sensor_info['description']+' at '+ platform_info['location']
global_atts = {
'title' : title_str,
'institution' : 'University of North Carolina at Chapel Hill (UNC-CH)',
'institution_url' : 'http://nccoos.unc.edu',
'institution_dods_url' : 'http://nccoos.unc.edu',
'metadata_url' : 'http://nccoos.unc.edu',
'references' : 'http://nccoos.unc.edu',
'contact' : 'Sara Haines ([email protected])',
#
'source' : 'surface current observation',
'history' : 'raw2proc using ' + sensor_info['process_module'],
'comment' : 'File created using pycdf'+pycdfVersion()+' and numpy '+pycdfArrayPkg(),
# conventions
'Conventions' : 'CF-1.0; SEACOOS-CDL-v2.0',
# SEACOOS CDL codes
'format_category_code' : 'fixed-map',
'institution_code' : platform_info['institution'],
'platform_code' : platform_info['id'],
'package_code' : sensor_info['id'],
# institution specific
'project' : 'North Carolina Coastal Ocean Observing System (NCCOOS)',
'project_url' : 'http://nccoos.org',
# timeframe of data contained in file yyyy-mm-dd HH:MM:SS
'start_date' : data['dt'][0].strftime("%Y-%m-%d %H:%M:%S"),
'end_date' : data['dt'][-1].strftime("%Y-%m-%d %H:%M:%S"),
'release_date' : now_dt.strftime("%Y-%m-%d %H:%M:%S"),
#
'creation_date' : now_dt.strftime("%Y-%m-%d %H:%M:%S"),
'modification_date' : now_dt.strftime("%Y-%m-%d %H:%M:%S"),
'process_level' : 'level1',
#
# must type match to data (e.g. fillvalue is real if data is real)
'_FillValue' : numpy.nan,
}
var_atts = {
# coordinate variables
'time' : {'short_name': 'time',
'long_name': 'Time',
'standard_name': 'time',
'units': 'seconds since 1970-1-1 00:00:00 -0', # UTC
'axis': 'T',
},
'lat' : {'short_name': 'lat',
'long_name': 'Latitude',
'standard_name': 'latitude',
'reference':'geographic coordinates',
'units': 'degrees_north',
'valid_range':(-90.,90.),
'axis': 'Y',
},
'lon' : {'short_name': 'lon',
'long_name': 'Longitude',
'standard_name': 'longitude',
'reference':'geographic coordinates',
'units': 'degrees_east',
'valid_range':(-180.,180.),
'axis': 'Y',
},
'z' : {'short_name': 'z',
'long_name': 'Height',
'standard_name': 'height',
'reference':'zero at sea-surface',
'units': 'm',
'axis': 'Z',
},
# data variables
'u' : {'short_name': 'u',
'long_name': 'E/W component of current',
'standard_name': 'eastward_current',
'units': 'cm sec-1',
'reference' : 'clockwise from True East',
},
'v' : {'short_name': 'v',
'long_name': 'N/S component of current',
'standard_name': 'northward_current',
'units': 'cm sec-1',
'reference' : 'clockwise from True North',
},
}
# dimension names use tuple so order of initialization is maintained
dim_inits = (
('ntime', NC.UNLIMITED),
('nlat', platform_info['nlat']),
('nlon', platform_info['nlon']),
('nz', 1),
)
# using tuple of tuples so order of initialization is maintained
# using dict for attributes order of init not important
# use dimension names not values
# (varName, varType, (dimName1, [dimName2], ...))
var_inits = (
# coordinate variables
('time', NC.INT, ('ntime',)),
('lat', NC.FLOAT, ('nlat',)),
('lon', NC.FLOAT, ('nlon',)),
('z', NC.FLOAT, ('nz',)),
# data variables
('u', NC.FLOAT, ('ntime','nlon','nlat')),
('v', NC.FLOAT, ('ntime','nlon','nlat')),
)
# subset data only to month being processed (see raw2proc.process())
i = data['in']
# var data
var_data = (
('lat', data['lat']),
('lon', data['lon']),
('z', 0.),
#
('time', data['time'][i]),
('u', data['u'][i]),
('v', data['v'][i]),
)
return (global_atts, var_atts, dim_inits, var_inits, var_data)
def updater(platform_info, sensor_info, data):
#
global_atts = {
# update times of data contained in file (yyyy-mm-dd HH:MM:SS)
# last date in monthly file
'end_date' : data['dt'][-1].strftime("%Y-%m-%d %H:%M:%S"),
'release_date' : now_dt.strftime("%Y-%m-%d %H:%M:%S"),
#
'modification_date' : now_dt.strftime("%Y-%m-%d %H:%M:%S"),
}
# data variables
# update any variable attributes like range, min, max
var_atts = {}
# var_atts = {
# 'u': {'max': max(data.u),
# 'min': min(data.v),
# },
# 'v': {'max': max(data.u),
# 'min': min(data.v),
# },
# }
# subset data only to month being processed (see raw2proc.process())
i = data['in']
# data
var_data = (
('time', data['time'][i]),
('u', data['u'][i]),
('v', data['v'][i]),
)
return (global_atts, var_atts, var_data)
#