-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproc_rdi_logdata_adcp.py
360 lines (312 loc) · 13.1 KB
/
proc_rdi_logdata_adcp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
#!/usr/bin/env python
# Last modified: Time-stamp: <2008-10-16 14:06:06 haines>
"""
how to parse data, and assert what data and info goes into
creating and updating monthly netcdf files
RDI/Wavesmon processed adcp current profile data
parser : sample date and time, ensemble number, currents
and wave summary output from WavesMon software
creator : lat, lon, z, time, ens, u, v
updator : time, ens, u, v
Examples
--------
>> (parse, create, update) = load_processors('proc_rdi_logdata_adcp')
or
>> si = get_config(cn+'.sensor_info')
>> (parse, create, update) = load_processors(si['adcp']['proc_module'])
>> lines = load_data(filename)
>> data = parse(platform_info, sensor_info, lines)
>> create(platform_info, sensor_info, data) or
>> update(platform_info, sensor_info, data)
"""
from raw2proc import *
from procutil import *
from ncutil import *
now_dt = datetime.utcnow()
now_dt.replace(microsecond=0)
def parser(platform_info, sensor_info, lines):
"""
parse and assign currents data from RDI ADCP Log Data
"""
i = 0
for line in lines:
# split line and parse float and integers
rdi = []
sw = re.split(',', line)
for s in sw:
m = re.search(REAL_RE_STR, s)
if m:
rdi.append(float(m.groups()[0]))
# assign specific fields
n = len(rdi)
burst_num = int(rdi[0]) # Ensemble Number
# get sample datetime from data
sample_str = '%02d-%02d-%02d %02d:%02d:%02d' % tuple(rdi[1:7])
if sensor_info['utc_offset']:
sample_dt = scanf_datetime(sample_str, fmt='%y-%m-%d %H:%M:%S') + \
timedelta(hours=sensor_info['utc_offset'])
else:
sample_dt = scanf_datetime(sample_str, fmt='%y-%m-%d %H:%M:%S')
# datetime(*strptime(sample_str, "%y-%m-%d %H:%M:%S")[0:6])
# get sample datetime from filename
# compare with datetime from filename
sig_wave_ht = rdi[8] # Significant Wave Height (Hs, meters)
peak_wave_period = rdi[9] # Peak Wave Period (Tp, sec)
peak_wave_dir = rdi[10] # Peak Wave Direction (deg N)
max_wave_ht = rdi[12] # Maximum Wave Height (Hmax, meters)
max_wave_period = rdi[13] # Maximum Wave Period (Tmax, sec)
wd = rdi[11]/1000 # Water Depth (meters) (based on ADCP backscatter or input config??)
# This includes height of transducer
nbins = int(rdi[14]) # Number of bins
current_spd = numpy.array(rdi[15::2]) # starting at idx=15 skip=2 to end
current_dir = numpy.array(rdi[16::2]) # starting at idx=16 skip=2 to end
if nbins!=sensor_info['nbins']:
print 'Number of bins reported in data ('+ \
str(nbins)+') does not match config number ('+ \
str(sensor_info['nbins'])+')'
if len(current_spd)!=nbins or len(current_dir)!=nbins:
print 'Data length does not match number of bins in data'
ibad = (current_spd==-32768) | (current_dir==-32768)
current_spd[ibad] = numpy.nan
current_dir[ibad] = numpy.nan
# these items can also be teased out of raw adcp but for now get from config file
th = sensor_info['transducer_ht'] # Transducer height above bottom (meters)
bh = sensor_info['blanking_ht'] # Blanking height above Transducer (meters)
bin_size = sensor_info['bin_size'] # Bin Size (meters)
# compute height for each bin above the bottom
bins = numpy.arange(1,nbins+1)
bin_habs = (bins*bin_size+bin_size/2)+th+bh
# compute water mask
# Using George Voulgaris' method based on water depth
# minus half of the significant wave height (Hs)
# and computed habs
# if positive is up, what's less than zero depth?
# added by SH -- 15 Oct 2008
# raw2proc:ticket:27 adjust bin_habs along beam to nadir
# adjustment is cos(20 deg) (which is approx .95*height) assuming fixed 20 deg
bin_habs = bin_habs*numpy.cos(20.*numpy.pi/180)
bin_depths = bin_habs-(wd)
iwater = bin_depths+bin_size/2 < 0
# use nominal water depth (MSL) averaged from full pressure record
# this should be checked/recalulated every so often
z = bin_habs + platform_info['mean_water_depth'] # meters, (+) up, (-) down
# check that length of bin_depths is equal to nbins
u = numpy.ones(nbins)*numpy.nan
v = numpy.ones(nbins)*numpy.nan
u[iwater] = current_spd[iwater]*numpy.sin(current_dir[iwater]*numpy.pi/180)
v[iwater] = current_spd[iwater]*numpy.cos(current_dir[iwater]*numpy.pi/180)
# set up dict of data if first line
if i==0:
data = {
'en' : numpy.array(numpy.ones((len(lines),), dtype=int)*numpy.nan),
'dt' : numpy.array(numpy.ones((len(lines),), dtype=object)*numpy.nan),
'time' : numpy.array(numpy.ones((len(lines),), dtype=long)*numpy.nan),
'z' : numpy.array(numpy.ones((nbins,), dtype=float)*numpy.nan),
'u' : numpy.array(numpy.ones((len(lines),nbins), dtype=float)*numpy.nan),
'v' : numpy.array(numpy.ones((len(lines),nbins), dtype=float)*numpy.nan),
'wd' : numpy.array(numpy.ones((len(lines)), dtype=float)*numpy.nan),
'wl' : numpy.array(numpy.ones((len(lines)), dtype=float)*numpy.nan),
}
data['en'][i] = burst_num
data['dt'][i] = sample_dt # sample datetime
data['time'][i] = dt2es(sample_dt) # sample time in epoch seconds
data['z'] = z
data['u'][i] = u
data['v'][i] = v
data['wd'][i] = -1*wd
data['wl'][i] = platform_info['mean_water_depth'] - (-1*wd)
i = i+1
return data
def creator(platform_info, sensor_info, data):
#
#
title_str = sensor_info['description']+' at '+ platform_info['location']
if 'mean_water_depth' in platform_info.keys():
msl_str = platform_info['mean_water_depth']
else:
msl_str = 'None'
if 'mean_water_depth_time_period' in platform_info.keys():
msl_tp_str = platform_info['mean_water_depth_time_period']
else:
msl_tp_str = 'None'
global_atts = {
'title' : title_str,
'institution' : 'University of North Carolina at Chapel Hill (UNC-CH)',
'institution_url' : 'http://nccoos.unc.edu',
'institution_dods_url' : 'http://nccoos.unc.edu',
'metadata_url' : 'http://nccoos.unc.edu',
'references' : 'http://nccoos.unc.edu',
'contact' : 'Sara Haines ([email protected])',
#
'source' : 'fixed-profiler (acoustic doppler) observation',
'history' : 'raw2proc using ' + sensor_info['process_module'],
'comment' : 'File created using pycdf'+pycdfVersion()+' and numpy '+pycdfArrayPkg(),
# conventions
'Conventions' : 'CF-1.0; SEACOOS-CDL-v2.0',
# SEACOOS CDL codes
'format_category_code' : 'fixed-profiler',
'institution_code' : platform_info['institution'],
'platform_code' : platform_info['id'],
'package_code' : sensor_info['id'],
# institution specific
'project' : 'North Carolina Coastal Ocean Observing System (NCCOOS)',
'project_url' : 'http://nccoos.unc.edu',
# timeframe of data contained in file yyyy-mm-dd HH:MM:SS
# first date in monthly file
'start_date' : data['dt'][0].strftime("%Y-%m-%d %H:%M:%S"),
# last date in monthly file
'end_date' : data['dt'][-1].strftime("%Y-%m-%d %H:%M:%S"),
'release_date' : now_dt.strftime("%Y-%m-%d %H:%M:%S"),
#
'mean_water_depth' : msl_str,
'mean_water_depth_time_period' : msl_tp_str,
#
'creation_date' : now_dt.strftime("%Y-%m-%d %H:%M:%S"),
'modification_date' : now_dt.strftime("%Y-%m-%d %H:%M:%S"),
'process_level' : 'level1',
#
# must type match to data (e.g. fillvalue is real if data is real)
'_FillValue' : -99999.,
}
var_atts = {
# coordinate variables
'time' : {'short_name': 'time',
'long_name': 'Time',
'standard_name': 'time',
'units': 'seconds since 1970-1-1 00:00:00 -0', # UTC
'axis': 'T',
},
'lat' : {'short_name': 'lat',
'long_name': 'Latitude',
'standard_name': 'latitude',
'reference':'geographic coordinates',
'units': 'degrees_north',
'valid_range':(-90.,90.),
'axis': 'Y',
},
'lon' : {'short_name': 'lon',
'long_name': 'Longitude',
'standard_name': 'longitude',
'reference':'geographic coordinates',
'units': 'degrees_east',
'valid_range':(-180.,180.),
'axis': 'Y',
},
'z' : {'short_name': 'z',
'long_name': 'Height',
'standard_name': 'height',
'reference':'zero at sea-surface',
'units': 'm',
'axis': 'Z',
},
# data variables
'en' : {'short_name' : 'en',
'long_name': 'Ensemble Number',
'standard_name': 'ensemble_number',
'units': 'None',
},
'u': {'short_name' : 'u',
'long_name': 'East/West Component of Current',
'standard_name': 'eastward_current',
'units': 'm s-1',
'reference': 'clockwise from True East',
},
'v': {'short_name' : 'v',
'long_name': 'North/South Component of Current',
'standard_name': 'northward_current',
'units': 'm s-1',
'reference': 'clockwise from True North',
},
'wd': {'short_name': 'wd',
'long_name': 'Water Depth',
'standard_name': 'water_depth',
'reference':'zero at surface',
'positive' : 'up',
'units': 'm',
},
'wl': {'short_name': 'wl',
'long_name': 'Water Level',
'standard_name': 'water_level',
'reference':'MSL',
'reference_to_MSL' : 0.,
'reference_MSL_datum' : platform_info['mean_water_depth'],
'reference_MSL_datum_time_period' : platform_info['mean_water_depth_time_period'],
'positive' : 'up',
'z' : 0.,
'units': 'm',
},
}
# dimension names use tuple so order of initialization is maintained
dim_inits = (
('ntime', NC.UNLIMITED),
('nlat', 1),
('nlon', 1),
('nz', sensor_info['nbins'])
)
# using tuple of tuples so order of initialization is maintained
# using dict for attributes order of init not important
# use dimension names not values
# (varName, varType, (dimName1, [dimName2], ...))
var_inits = (
# coordinate variables
('time', NC.INT, ('ntime',)),
('lat', NC.FLOAT, ('nlat',)),
('lon', NC.FLOAT, ('nlon',)),
('z', NC.FLOAT, ('nz',)),
# data variables
('en', NC.INT, ('ntime', )),
('u', NC.FLOAT, ('ntime', 'nz')),
('v', NC.FLOAT, ('ntime', 'nz')),
('wd', NC.FLOAT, ('ntime',)),
('wl', NC.FLOAT, ('ntime',)),
)
# subset data only to month being processed (see raw2proc.process())
i = data['in']
# var data
var_data = (
('lat', platform_info['lat']),
('lon', platform_info['lon']),
('z', data['z']),
#
('time', data['time'][i]),
('en', data['en'][i]),
('u', data['u'][i]),
('v', data['v'][i]),
('wd', data['wd'][i]),
('wl', data['wl'][i]),
)
return (global_atts, var_atts, dim_inits, var_inits, var_data)
def updater(platform_info, sensor_info, data):
#
global_atts = {
# update times of data contained in file (yyyy-mm-dd HH:MM:SS)
# last date in monthly file
'end_date' : data['dt'][-1].strftime("%Y-%m-%d %H:%M:%S"),
'release_date' : now_dt.strftime("%Y-%m-%d %H:%M:%S"),
#
'modification_date' : now_dt.strftime("%Y-%m-%d %H:%M:%S"),
}
# data variables
# update any variable attributes like range, min, max
var_atts = {}
# var_atts = {
# 'u': {'max': max(data.u),
# 'min': min(data.v),
# },
# 'v': {'max': max(data.u),
# 'min': min(data.v),
# },
# }
# subset data only to month being processed (see raw2proc.process())
i = data['in']
# data
var_data = (
('time', data['time'][i]),
('en', data['en'][i]),
('u', data['u'][i]),
('v', data['v'][i]),
('wd', data['wd'][i]),
('wl', data['wl'][i]),
)
return (global_atts, var_atts, var_data)
#