-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathSortedInsertPosition.java
95 lines (77 loc) · 3.91 KB
/
SortedInsertPosition.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
package com.interviewbit.binary_search;
import com.util.LogUtil;
import java.math.BigDecimal;
import java.util.ArrayList;
import java.util.Arrays;
/**
* https://www.interviewbit.com/problems/sorted-insert-position/
* <p>
* Given a sorted array and a target value, return the index if the target is found. If not, return the index where it would be if it were inserted in order.
* <p>
* You may assume no duplicates in the array.
* <p>
* Here are few examples.
* <p>
* [1,3,5,6], 5 → 2
* [1,3,5,6], 2 → 1
* [1,3,5,6], 7 → 4
* [1,3,5,6], 0 → 0
*
* @author neeraj on 2019-07-30
* Copyright (c) 2019, data-structures.
* All rights reserved.
*/
public class SortedInsertPosition {
public static void main(String[] args) {
ArrayList<Integer> list = new ArrayList<>(Arrays.asList(1, 3, 5, 6));
Arrays.asList(5, 2, 7, 0).forEach(item ->
LogUtil.logIt(list + " , " + item + " --> " + searchInsert(list, item)));
ArrayList<Integer> list2 = new ArrayList<>(Arrays.asList(3, 4, 18, 19, 20, 27, 28, 31, 36, 42, 44, 71, 72, 75, 82, 86, 88, 97, 100, 103, 105, 107, 110, 116, 118, 119, 121, 122, 140, 141, 142, 155, 157, 166, 176, 184, 190, 199, 201, 210, 212, 220, 225, 234, 235, 236, 238, 244, 259, 265, 266, 280, 283, 285, 293, 299, 309, 312, 317, 335, 341, 352, 354, 360, 365, 368, 370, 379, 386, 391, 400, 405, 410, 414, 416, 428, 433, 437, 438, 445, 453, 457, 458, 472, 476, 480, 485, 489, 491, 493, 501, 502, 505, 510, 511, 520, 526, 535, 557, 574, 593, 595, 604, 605, 612, 629, 632, 633, 634, 642, 647, 653, 654, 656, 658, 686, 689, 690, 691, 709, 716, 717, 737, 738, 746, 759, 765, 775, 778, 783, 786, 787, 791, 797, 801, 806, 815, 820, 822, 823, 832, 839, 841, 847, 859, 873, 877, 880, 886, 904, 909, 911, 917, 919, 937, 946, 948, 951, 961, 971, 979, 980, 986, 993));
System.out.println(searchInsert(list2, 904));
System.out.println(pow(71045970, 99046373, 57263970));
// System.out.println(pow(3, 8, 20));
// System.out.println(pow(2, 100, 20));
}
public static int pow(int x, int n, int d) {
int tempPower = n;
if (tempPower % 2 != 0) { // if power is odd, let's subtract one and make it even
tempPower = tempPower - 1;
}
BigDecimal powerResult = BigDecimal.ONE;
for (int i = 0; i < tempPower / 2; i++) {
powerResult = powerResult.multiply(new BigDecimal(x).pow(2));
}
if (n % 2 != 0) {
powerResult = powerResult.multiply(new BigDecimal(x));
}
if (powerResult.compareTo(BigDecimal.ZERO) == -1) {
powerResult = powerResult.add(new BigDecimal(d));
}
return powerResult.remainder(new BigDecimal(d)).intValue();
}
public static int searchInsert(ArrayList<Integer> a, int b) {
positionToInsert = 0;
return binarySearch(a, 0, a.size() - 1, b);
}
static int positionToInsert = 0;
public static int binarySearch(ArrayList<Integer> a, int low, int high, int b) {
if (low <= high) {
int mid = low + (high - low) / 2;
if (a.get(mid) == b) {
return mid;
} // IF THE ITEM WE ARE SEARCHING IS > MID, THEN DEFINITELY, ITEM WILL BE PLACED AFTER MID,
// BECAUSE TILL MID EVERYTHING IS WORKING FINE
else if (a.get(mid) < b) {
positionToInsert = mid + 1;
return binarySearch(a, mid + 1, high, b);
} // // IF THE ITEM WE ARE SEARCHING IS < MID, THEN ITEM CAN BE PLACED ANYWHERE FROM 0 TILL MID, AND EVEN ON MID
// BECAUSE MID HAS TO LEAVE IT'S PLACE SINCE SOME ITEM IS DEFINITELY GONNA COME AT LEFT SIDE OF MID.
// HENCE WE ARE JUST KEEPING POSITION TO INSERT AS MID AND NOT MID-1;
else if (a.get(mid) > b) {
positionToInsert = mid;
return binarySearch(a, low, mid - 1, b);
}
}
return positionToInsert;
}
}