-
Notifications
You must be signed in to change notification settings - Fork 97
/
Copy pathbase.py
325 lines (249 loc) · 11.2 KB
/
base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
import os
import pprint
import shutil
import numpy as np
from scipy import sparse
import joblib
from .utils import view_graph, plot_graph, get_logger, initialize_logger
initialize_logger()
logger = get_logger()
class Step:
def __init__(self, name, transformer, input_steps=[], input_data=[], adapter=None,
cache_dirpath=None, is_trainable=False, cache_output=False, save_output=False, load_saved_output=False,
save_graph=False, force_fitting=False):
self.name = name
self.transformer = transformer
self.input_steps = input_steps
self.input_data = input_data
self.adapter = adapter
self.is_trainable = is_trainable
self.force_fitting = force_fitting
self.cache_output = cache_output
self.save_output = save_output
self.load_saved_output = load_saved_output
self.cache_dirpath = cache_dirpath
self._prep_cache(cache_dirpath)
if save_graph:
graph_filepath = os.path.join(self.cache_dirpath, '{}_graph.json'.format(self.name))
logger.info('Saving graph to {}'.format(graph_filepath))
joblib.dump(self.graph_info, graph_filepath)
def _copy_transformer(self, step, name, dirpath):
self.transformer = self.transformer.transformer
original_filepath = os.path.join(step.cache_dirpath, 'transformers', step.name)
copy_filepath = os.path.join(dirpath, 'transformers', name)
logger.info('copying transformer from {} to {}'.format(original_filepath, copy_filepath))
shutil.copyfile(original_filepath, copy_filepath)
def _prep_cache(self, cache_dirpath):
for dirname in ['transformers', 'outputs', 'tmp']:
os.makedirs(os.path.join(cache_dirpath, dirname), exist_ok=True)
self.cache_dirpath_transformers = os.path.join(cache_dirpath, 'transformers')
self.save_dirpath_outputs = os.path.join(cache_dirpath, 'outputs')
self.save_dirpath_tmp = os.path.join(cache_dirpath, 'tmp')
self.cache_filepath_step_transformer = os.path.join(self.cache_dirpath_transformers, self.name)
self.save_filepath_step_output = os.path.join(self.save_dirpath_outputs, '{}'.format(self.name))
self.save_filepath_step_tmp = os.path.join(self.save_dirpath_tmp, '{}'.format(self.name))
self._cached_output = None
def clean_cache(self):
for name, step in self.all_steps.items():
step._clean_cache()
def _clean_cache(self):
if os.path.exists(self.save_filepath_step_tmp):
os.remove(self.save_filepath_step_tmp)
self._cached_output = None
@property
def named_steps(self):
return {step.name: step for step in self.input_steps}
def get_step(self, name):
return self.all_steps[name]
@property
def transformer_is_cached(self):
if isinstance(self.transformer, Step):
self._copy_transformer(self.transformer, self.name, self.cache_dirpath)
return os.path.exists(self.cache_filepath_step_transformer)
@property
def output_is_cached(self):
return self._cached_output is not None
@property
def output_is_saved(self):
return os.path.exists(self.save_filepath_step_output)
def fit_transform(self, data):
if self.output_is_cached and not self.force_fitting:
logger.info('step {} loading output...'.format(self.name))
return self._cached_output
elif self.output_is_saved and self.load_saved_output and not self.force_fitting:
logger.info('step {} loading output...'.format(self.name))
return self._load_output(self.save_filepath_step_output)
else:
step_inputs = {}
if self.input_data is not None:
for input_data_part in self.input_data:
step_inputs[input_data_part] = data[input_data_part]
for input_step in self.input_steps:
step_inputs[input_step.name] = input_step.fit_transform(data)
if self.adapter:
step_inputs = self.adapt(step_inputs)
else:
step_inputs = self.unpack(step_inputs)
return self._cached_fit_transform(step_inputs)
def _cached_fit_transform(self, step_inputs):
if self.is_trainable:
if self.transformer_is_cached and not self.force_fitting:
logger.info('step {} loading transformer...'.format(self.name))
self.transformer.load(self.cache_filepath_step_transformer)
logger.info('step {} transforming...'.format(self.name))
step_output_data = self.transformer.transform(**step_inputs)
else:
logger.info('step {} fitting and transforming...'.format(self.name))
step_output_data = self.transformer.fit_transform(**step_inputs)
logger.info('step {} saving transformer...'.format(self.name))
self.transformer.save(self.cache_filepath_step_transformer)
else:
logger.info('step {} transforming...'.format(self.name))
step_output_data = self.transformer.transform(**step_inputs)
if self.cache_output:
logger.info('step {} caching outputs...'.format(self.name))
self._cached_output = step_output_data
if self.save_output:
logger.info('step {} saving outputs...'.format(self.name))
self._save_output(step_output_data, self.save_filepath_step_output)
return step_output_data
def _load_output(self, filepath):
return joblib.load(filepath)
def _save_output(self, output_data, filepath):
joblib.dump(output_data, filepath)
def transform(self, data):
if self.output_is_cached:
logger.info('step {} loading output...'.format(self.name))
return self._cached_output
elif self.output_is_saved and self.load_saved_output:
logger.info('step {} loading output...'.format(self.name))
return self._load_output(self.save_filepath_step_output)
else:
step_inputs = {}
if self.input_data is not None:
for input_data_part in self.input_data:
step_inputs[input_data_part] = data[input_data_part]
for input_step in self.input_steps:
step_inputs[input_step.name] = input_step.transform(data)
if self.adapter:
step_inputs = self.adapt(step_inputs)
else:
step_inputs = self.unpack(step_inputs)
return self._cached_transform(step_inputs)
def _cached_transform(self, step_inputs):
if self.is_trainable:
if self.transformer_is_cached:
logger.info('step {} loading transformer...'.format(self.name))
self.transformer.load(self.cache_filepath_step_transformer)
logger.info('step {} transforming...'.format(self.name))
step_output_data = self.transformer.transform(**step_inputs)
else:
raise ValueError('No transformer cached {}'.format(self.name))
else:
logger.info('step {} transforming...'.format(self.name))
step_output_data = self.transformer.transform(**step_inputs)
if self.cache_output:
logger.info('step {} caching outputs...'.format(self.name))
self._cached_output = step_output_data
if self.save_output:
logger.info('step {} saving outputs...'.format(self.name))
self._save_output(step_output_data, self.save_filepath_step_output)
return step_output_data
def adapt(self, step_inputs):
logger.info('step {} adapting inputs'.format(self.name))
adapted_steps = {}
for adapted_name, mapping in self.adapter.items():
if isinstance(mapping, str):
adapted_steps[adapted_name] = step_inputs[mapping]
else:
if len(mapping) == 2:
(step_mapping, func) = mapping
elif len(mapping) == 1:
step_mapping = mapping
func = identity_inputs
else:
raise ValueError('wrong mapping specified')
raw_inputs = [step_inputs[step_name][step_var] for step_name, step_var in step_mapping]
adapted_steps[adapted_name] = func(raw_inputs)
return adapted_steps
def unpack(self, step_inputs):
logger.info('step {} unpacking inputs'.format(self.name))
unpacked_steps = {}
for step_name, step_dict in step_inputs.items():
unpacked_steps = {**unpacked_steps, **step_dict}
return unpacked_steps
@property
def all_steps(self):
all_steps = {}
all_steps = self._get_steps(all_steps)
return all_steps
def _get_steps(self, all_steps):
for input_step in self.input_steps:
all_steps = input_step._get_steps(all_steps)
all_steps[self.name] = self
return all_steps
@property
def graph_info(self):
graph_info = {'edges': set(),
'nodes': set()}
graph_info = self._get_graph_info(graph_info)
return graph_info
def _get_graph_info(self, graph_info):
for input_step in self.input_steps:
graph_info = input_step._get_graph_info(graph_info)
graph_info['edges'].add((input_step.name, self.name))
graph_info['nodes'].add(self.name)
for input_data in self.input_data:
graph_info['nodes'].add(input_data)
graph_info['edges'].add((input_data, self.name))
return graph_info
def plot_graph(self, filepath):
plot_graph(self.graph_info, filepath)
def __str__(self):
return pprint.pformat(self.graph_info)
def _repr_html_(self):
return view_graph(self.graph_info)
class BaseTransformer:
def fit(self, *args, **kwargs):
return self
def transform(self, *args, **kwargs):
return NotImplementedError
def fit_transform(self, *args, **kwargs):
self.fit(*args, **kwargs)
return self.transform(*args, **kwargs)
def load(self, filepath):
return self
def save(self, filepath):
joblib.dump({}, filepath)
class MockTransformer(BaseTransformer):
def fit(self, *args, **kwargs):
return self
def transform(self, *args, **kwargs):
return
def fit_transform(self, *args, **kwargs):
self.fit(*args, **kwargs)
return self.transform(*args, **kwargs)
class Dummy(BaseTransformer):
def transform(self, **kwargs):
return kwargs
def to_tuple_inputs(inputs):
return tuple(inputs)
def identity_inputs(inputs):
return inputs[0]
def sparse_hstack_inputs(inputs):
return sparse.hstack(inputs)
def hstack_inputs(inputs):
return np.hstack(inputs)
def vstack_inputs(inputs):
return np.vstack(inputs)
def stack_inputs(inputs):
stacked = np.stack(inputs, axis=0)
return stacked
def sum_inputs(inputs):
stacked = np.stack(inputs, axis=0)
return np.sum(stacked, axis=0)
def average_inputs(inputs):
stacked = np.stack(inputs, axis=0)
return np.mean(stacked, axis=0)
def exp_transform(inputs):
return np.exp(inputs[0])