-
Notifications
You must be signed in to change notification settings - Fork 97
/
Copy pathloaders.py
55 lines (43 loc) · 1.74 KB
/
loaders.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
from keras.preprocessing import text, sequence
import joblib
from ..base import BaseTransformer
class Tokenizer(BaseTransformer):
def __init__(self, char_level, maxlen, num_words):
self.char_level = char_level
self.maxlen = maxlen
self.num_words = num_words
self.tokenizer = text.Tokenizer(char_level=self.char_level, num_words=self.num_words)
def fit(self, X, X_valid=None, train_mode=True):
self.tokenizer.fit_on_texts(X)
return self
def transform(self, X, X_valid=None, train_mode=True):
X_tokenized = self._transform(X)
if X_valid is not None:
X_valid_tokenized = self._transform(X_valid)
else:
X_valid_tokenized = None
return {'X': X_tokenized,
'X_valid': X_valid_tokenized,
'tokenizer': self.tokenizer}
def _transform(self, X):
list_tokenized = self.tokenizer.texts_to_sequences(list(X))
X_tokenized = sequence.pad_sequences(list_tokenized, maxlen=self.maxlen)
return X_tokenized
def load(self, filepath):
object_pickle = joblib.load(filepath)
self.char_level = object_pickle['char_level']
self.maxlen = object_pickle['maxlen']
self.num_words = object_pickle['num_words']
self.tokenizer = object_pickle['tokenizer']
return self
def save(self, filepath):
object_pickle = {'char_level': self.char_level,
'maxlen': self.maxlen,
'num_words': self.num_words,
'tokenizer': self.tokenizer}
joblib.dump(object_pickle, filepath)
class TextAugmenter(BaseTransformer):
pass
"""
Augmentations by Thesaurus synonim substitution or typos
"""