-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathiteration.cpp
268 lines (215 loc) · 7.65 KB
/
iteration.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
// standard includes
#include <iostream>
#include <cassert>
#include <cmath>
#include <cctype>
#include <stdexcept>
#include <algorithm>
#include <functional>
#include <unordered_map>
#include <string>
#include <CGAL/Aff_transformation_2.h>
#include <CGAL/ch_graham_andrew.h>
#include <CGAL/ch_melkman.h>
#include "json.hpp" // nlohmann's json lib
#include "polygon.hpp"
#include "rounding.hpp"
Polygon_2 g_inner(const Polygon_2 &chS_plus_A, const VD &voronoi)
{
// ensure that the union of the clipped voronoi regions cover chS+A
int bound = 100.0 * find_bounding_radius(chS_plus_A);
// for each c, compute W_c = (chS + A) ∩ V(c) - c
// where V(c) is the voronoi face belonging to delaunay-vertex ('site') c
//
// (however, we iterate over the faces and get c via the .dual() method)
std::vector<Polygon_2> plist;
for (auto face_it = voronoi.faces_begin(); face_it != voronoi.faces_end();
++face_it) {
auto c = face_it->dual()->point();
CGAL::Aff_transformation_2<K> translate_by_c(CGAL::TRANSLATION, CGAL::Vector_2<K>(c, Point_2(0, 0)));
auto intersected_region = intersection(chS_plus_A, convert_face_to_polygon(*face_it, bound));
plist.push_back(transform(translate_by_c, intersected_region));
}
// take the union over the W_c sets for all c
return union_of_overlapping_polygons(plist);
}
Polygon_2 g(const Polygon_2 &A, const Polygon_2 &chS, const VD &voronoi) {
//non convex G-iteration
Polygon_2 chS_plus_A = minkowski_sum_between_nonconv_and_conv(A, chS);
return g_inner(chS_plus_A, voronoi);
}
Polygon_2 G(const Polygon_2 &A, const Polygon_2 &chS, const VD &voronoi) {
// convex G-iteration
//
// assumes A is convex
Polygon_2 U = g_inner(minkowski_sum_between_convex_sets(chS, A), voronoi);
Polygon_2 convex_result;
CGAL::ch_melkman(U.vertices_begin(), U.vertices_end(), std::back_inserter(convex_result));
return convex_result;
}
Polygon_2 f(const Polygon_2 &D, const Polygon_2 &chS, const VD &voronoi) {
// non-convex f-iteration
return minkowski_sum_between_nonconv_and_conv(g_inner(D, voronoi), chS);
}
Polygon_2 F(const Polygon_2 &D, const Polygon_2 &chS, const VD &voronoi) {
// convex F-iteration
Polygon_2 chS_plus_UD = minkowski_sum_between_nonconv_and_conv(g_inner(D, voronoi), chS);
Polygon_2 convex_result;
CGAL::ch_melkman(chS_plus_UD.vertices_begin(), chS_plus_UD.vertices_end(), std::back_inserter(convex_result));
return convex_result;
}
CGAL::Gmpq get_frac(const nlohmann::json &j) {
if (j.is_string())
return j.get<std::string>();
else
return j.get<int>();
}
auto precompute_convex_hulls_and_voronoi_diagrams(
const nlohmann::json &user_input) {
std::vector<std::pair<Polygon_2, VD>> cvs;
// convex hulls and voronoi diagrams
for (auto &point_set : user_input["point_sets"]) {
VD vd;
for (const auto &coord_pair : point_set) {
Point_2 p(get_frac(coord_pair[0]), get_frac(coord_pair[1]));
vd.insert(p);
}
assert(vd.is_valid());
Polygon_2 chS;
CGAL::ch_graham_andrew(vd.sites_begin(), vd.sites_end(),
std::back_inserter(chS));
cvs.emplace_back(std::make_pair(chS, vd));
}
return cvs;
}
void echo_parsed_input(const std::vector<std::pair<Polygon_2,VD>>& cvs)
{
auto sz = cvs.size();
std::cout << "Read " << sz << " point " << ((sz==1) ? "set" : "sets") << ":" << std::endl;
for (const auto& pair : cvs)
{
auto vd = pair.second;
Polygon_2 P;
for (auto it = vd.sites_begin(); it != vd.sites_end(); ++it)
P.push_back(*it);
print_polygon(P);
}
}
Polygon_2
parse_or_create_initial_set(const nlohmann::json &user_input,
const std::string &iter,
const std::vector<std::pair<Polygon_2, VD>> &cvs) {
Polygon_2 A;
if (user_input.count("A") == 1){
for (const auto &coord_pair :user_input["A"])
{
Point_2 p(get_frac(coord_pair[0]), get_frac(coord_pair[1]));
A.push_back(p);
}
}
else if (std::toupper(iter[0]) == 'G')
A.push_back(Point_2(0, 0));
else if (std::toupper(iter[0]) == 'F')
A = cvs[0].first;
else throw std::runtime_error("ERROR: failed to create initial set");
return A;
}
template <template <typename...> class Iterable>
void run_fixed_point_iteration(
std::function<Polygon_2(const Polygon_2 &, const Polygon_2 &, const VD &)>& fun,
Polygon_2 &A, const Iterable<std::pair<Polygon_2, VD>> &cvs,
int digit_threshold, double error, bool apply_conv_hull) {
// needed for rounding
auto s = build_nice_fraction_list(1000);
std::vector<int> rounding_bookkeep;
Polygon_2 A_original;
std::cout << "Starting fixed point iteration..." << std::endl;
auto iter = 0;
while (true) {
A_original = A;
std::vector<Polygon_2> plist;
for (auto &p : cvs) {
plist.push_back(fun(A, p.first, p.second));
}
A = union_of_overlapping_polygons(plist);
if (A == A_original)
// did we converge?
break;
if (iter % 5 == 0) { // do not round in every iteration
auto V = round_vertices(A, s, digit_threshold, error);
A = V.first;
if (V.second) {
std::cout << "Applied rounding in iteration " << iter << std::endl;
A = remove_redundant_vertices(A);
rounding_bookkeep.push_back(iter);
}
}
iter++;
if (iter % 1 == 0) {
std::cout << "iteration: " << iter << std::endl;
print_polygon(A);
}
}
std::cout << "Found invariant set after " << iter
<< ((iter == 1) ? " iteration." : " iterations.") << std::endl;
if (rounding_bookkeep.size() == 0)
std::cout << "Coefficient rounding was not necessary and has not been applied.\n";
else
{
std::cout << "Coefficient rounding has been applied in the following " << rounding_bookkeep.size() << " iterations:\n[";
for (int i : rounding_bookkeep)
std::cout << i << ", ";
std::cout << "]\n\n";
}
std::cout << "The coordinates of the invariant polygon are:" << std::endl;
print_polygon(A);
}
int main(int argc, char* argv[])
{
using json = nlohmann::json;
if(argc < 2)
{
std::cerr << "Usage: " << argv[0] << " <points file>" << std::endl;
return 1;
}
// read points and build Voronoi diagram
std::ifstream ifs(argv[1]);
assert( ifs );
json j;
ifs >> j;
ifs.close();
auto cvs = precompute_convex_hulls_and_voronoi_diagrams(j); // convex hulls and voronoi diagrams
echo_parsed_input(cvs);
double error(1e-8);
if (j.count("rounding_error") == 1) {
error = j["rounding_error"].get<double>();
}
int digit_threshold(10);
if (j.count("digit_threshold") == 1) {
digit_threshold = j["digit_threshold"].get<int>();
}
std::unordered_map<std::string,
std::function<Polygon_2(const Polygon_2 &,
const Polygon_2 &, const VD &)>>
function_map = {{"g", g}, {"G", G}, {"f", f}, {"F", F}};
std::string iter_name("g");
if (j.count("iteration") == 1) {
iter_name = j["iteration"].get<std::string>();
// validate input
if (function_map.find(iter_name) == function_map.end())
{
std::cout << "ERROR: Unknown user-specified iteration: " << iter_name << "\n";
std::cout << "Available iteration types:\n";
for(const auto& kv: function_map)
std::cout << " " << kv.first << '\n';
return -1;
}
}
auto A = parse_or_create_initial_set(j, iter_name, cvs);
std::cout << "We will use the following polygon as starting set." << std::endl;
print_polygon(A);
std::cout << "Performing the " << iter_name << "-iteration.\n";
bool apply_conv_hull = (iter_name[0] == 'F');
run_fixed_point_iteration(function_map[iter_name], A, cvs, digit_threshold, error, apply_conv_hull);
return 0;
}