-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathd13.py
200 lines (170 loc) · 5.86 KB
/
d13.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import itertools
import logging
from collections.abc import Iterable
from adventofcode.tooling.coordinates import X, Y
from adventofcode.tooling.map import IterDirection, Map2d
_logger = logging.getLogger(__name__)
def _parse_maps(input_str: str) -> Iterable[Map2d]:
lines: list[list[str]] = []
for line in input_str.splitlines():
if not line:
yield Map2d(lines)
lines = []
continue
lines.append(list(line))
if lines:
yield Map2d(lines)
def _compare_datas(
data1: Iterable[str], data2: Iterable[str], allowed_mismatches: int
) -> int | None:
mismatches = 0
for sym1, sym2 in zip(data1, data2, strict=False):
if sym1 != sym2:
mismatches += 1
if mismatches > allowed_mismatches:
return None
return mismatches
def _find_consecutive_rows_or_columns(
map_: Map2d,
start_pos: int,
direction: IterDirection,
allowed_mismatches: int,
) -> tuple[int, int] | None:
match direction:
case IterDirection.Rows:
first_y = Y(start_pos)
first_x = X(0)
case IterDirection.Columns:
first_y = Y(0)
first_x = X(start_pos)
for (i1, data1), (_, data2) in itertools.pairwise(
(i, [sym for _, sym in sym_iter])
for i, sym_iter in map_.iter_data(first_y, first_x, direction=direction)
):
match_res = _compare_datas(data1, data2, allowed_mismatches)
if match_res is None:
continue
return i1, match_res
return None
def _map_data_iter_to_data(d: tuple[int, str]) -> str:
return d[1]
def _check_if_datas_around_reflection_match(
map_: Map2d,
pos_before_reflection: int,
direction: IterDirection,
allowed_mismatches: int,
) -> int | None:
match direction:
case IterDirection.Rows:
before_first_y = Y(pos_before_reflection - 1)
before_first_x = X(0)
before_last_y = Y(-1)
before_last_x = map_.br_x
after_first_y = Y(pos_before_reflection + 2)
after_first_x = X(0)
case IterDirection.Columns:
before_first_y = Y(0)
before_first_x = X(pos_before_reflection - 1)
before_last_y = map_.br_y
before_last_x = X(-1)
after_first_y = Y(0)
after_first_x = X(pos_before_reflection + 2)
mismatches = 0
for (i1, data1_iter), (i2, data2_iter) in zip(
map_.iter_data(before_first_y, before_first_x, before_last_y, before_last_x),
map_.iter_data(after_first_y, after_first_x),
strict=False,
):
match_res = _compare_datas(
map(_map_data_iter_to_data, data1_iter),
map(_map_data_iter_to_data, data2_iter),
allowed_mismatches,
)
if match_res is None:
_logger.debug("Invalid mirror data at %d and %d", i1, i2)
return None
assert match_res >= 0
mismatches += match_res
if mismatches > allowed_mismatches:
return None
return mismatches
def _find_reflection_line(
map_: Map2d, direction: IterDirection, required_mismatches: int = 0
) -> int | None:
_logger.debug(
"Searching for reflection with %d required mismatches", required_mismatches
)
search_start_pos = 0
while True:
remaining_mismatches = required_mismatches
found_data_info = _find_consecutive_rows_or_columns(
map_, search_start_pos, direction, remaining_mismatches
)
if found_data_info is None:
_logger.debug(
"No consecutive datas found with %d allowed mismatches",
remaining_mismatches,
)
return None
first_pos, mismatches = found_data_info
search_start_pos = first_pos + 1
remaining_mismatches -= mismatches
_logger.debug(
"Found reflection at %d with %d mismatches remaining",
first_pos,
remaining_mismatches,
)
check_res = _check_if_datas_around_reflection_match(
map_, first_pos, direction, remaining_mismatches
)
if check_res is None:
_logger.debug(
"Datas around reflection don't match with %d allowed mismatches",
remaining_mismatches,
)
continue
remaining_mismatches -= check_res
assert remaining_mismatches >= 0
if remaining_mismatches > 0:
_logger.debug("Not enough mismatches")
continue
_logger.debug("Found perfect reflection at %d", first_pos)
return first_pos
def _resolve(input_str: str, required_mismatches_per_map: int) -> int:
result: int = 0
for map_counter, map_ in enumerate(_parse_maps(input_str), 1):
_logger.info(
"Map %2d: Size (LxC) %2d x %2d\n%s",
map_counter,
map_.height,
map_.width,
map_,
)
match_index = _find_reflection_line(
map_, IterDirection.Rows, required_mismatches_per_map
)
if match_index is not None:
line_or_column = "L"
match_multiplier = 100
else:
match_index = _find_reflection_line(
map_, IterDirection.Columns, required_mismatches_per_map
)
assert match_index is not None
line_or_column = "C"
match_multiplier = 1
map_result = (match_index + 1) * match_multiplier
result += map_result
_logger.info(
"Map %2d: %s: %2d, map_result: %5d, result so far: %d",
map_counter,
line_or_column,
match_index + 1,
map_result,
result,
)
return result
def p1(input_str: str) -> int:
return _resolve(input_str, 0)
def p2(input_str: str) -> int:
return _resolve(input_str, 1)