-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMorphology image processing_Task3.py
180 lines (138 loc) · 6.57 KB
/
Morphology image processing_Task3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
"""
Morphology Image Processing
(Due date: Nov. 26, 11:59 P.M., 2021)
The goal of this task is to experiment with commonly used morphology
binary image processing techniques. Use the proper combination of the four commonly used morphology operations,
i.e. erosion, dilation, open and close, to remove noises and extract boundary of a binary image.
Specifically, you are given a binary image with noises for your testing, which is named 'task3.png'.
Note that different binary image might be used when grading your code.
You are required to write programs to:
(i) implement four commonly used morphology operations: erosion, dilation, open and close.
The stucturing element (SE) should be a 3x3 square of all 1's for all the operations.
(ii) remove noises in task3.png using proper combination of the above morphology operations.
(iii) extract the boundaries of the objects in denoised binary image
using proper combination of the above morphology operations.
Hint:
• Zero-padding is needed before morphology operations.
Do NOT modify the code provided to you.
You are NOT allowed to use OpenCV library except the functions we already been imported from cv2.
You are allowed to use Numpy libraries, HOWEVER,
you are NOT allowed to use any functions or APIs directly related to morphology operations.
Please implement erosion, dilation, open and close operations ON YOUR OWN.
"""
from cv2 import imread, imwrite, imshow, IMREAD_GRAYSCALE, namedWindow, waitKey, destroyAllWindows
import numpy as np
def morph_erode(img):
"""
:param img: numpy.ndarray(int or bool), image
:return erode_img: numpy.ndarray(int or bool), image, same size as the input image
Apply mophology erosion on input binary image.
Use 3x3 squared structuring element of all 1's.
"""
# TO DO: implement your solution here
#Zero padding
z = np.zeros((img.shape[0] + 2, img.shape[1] + 2))
z1 = np.zeros((img.shape[0], img.shape[1]))
b = [[1, 1, 1], [1, 1, 1], [1, 1, 1]] #structuring element
z[1:img.shape[0]+1, 1:img.shape[1]+1] = img
a = z
for i in range(1, img.shape[0] + 1):
for j in range(1, img.shape[1] + 1):
c = [a[i - 1][j - 1], a[i - 1][j], a[i - 1][j + 1], a[i][j - 1], a[i][j], a[i][j + 1], a[i + 1][j - 1],
a[i + 1][j], a[i + 1][j + 1]]
c = np.reshape(c, (3, 3))
l = np.prod(b * c)
if l != 0: #using product of neighbours to "b", if it is not zero then 255 is placed at center: if atleast one neighbour element is zero the center element is zero
z1[i - 1][j - 1] = 255
else:
z1[i - 1][j - 1] = 0
erode_img = z1.astype(np.uint8)
return erode_img
def morph_dilate(img):
"""
:param img: numpy.ndarray(int or bool), image
:return dilate_img: numpy.ndarray(int or bool), image, same size as the input image
Apply mophology dilation on input binary image.
Use 3x3 squared structuring element of all 1's.
"""
# TO DO: implement your solution here
# Zero padding
z = np.zeros((img.shape[0]+2, img.shape[1]+2))
z1 = np.zeros((img.shape[0], img.shape[1]))
b = [[1,1,1], [1,1,1], [1,1,1]] #structuring element
z[1:img.shape[0]+1, 1:img.shape[1]+1] = img
a = z
for i in range(1, img.shape[0] + 1):
for j in range(1, img.shape[1] + 1):
c = [a[i - 1][j - 1], a[i - 1][j], a[i - 1][j + 1], a[i][j - 1], a[i][j], a[i][j + 1], a[i + 1][j - 1],
a[i + 1][j], a[i + 1][j + 1]]
c = np.reshape(c, (3, 3))
l = np.sum(b*c)
if l != 0: #using sum of neighbours to "b", if it is not zero then 255 is placed at center: if atleast one neighbourhood element is non-zero, the center element is 255
z1[i-1][j-1] = 255
else:
z1[i - 1][j - 1] = 0
dilate_img = z1.astype(np.uint8)
return dilate_img
def morph_open(img):
"""
:param img: numpy.ndarray(int or bool), image
:return open_img: numpy.ndarray(int or bool), image, same size as the input image
Apply mophology opening on input binary image.
Use 3x3 squared structuring element of all 1's.
You can use the combination of above morph_erode/dilate functions for this.
"""
# TO DO: implement your solution here
# open: erode and then dilate
erode_img = morph_erode(img)
open_img = morph_dilate(erode_img)
open_img = open_img.astype(np.uint8)
return open_img
def morph_close(img):
"""
:param img: numpy.ndarray(int or bool), image
:return close_img: numpy.ndarray(int or bool), image, same size as the input image
Apply mophology closing on input binary image.
Use 3x3 squared structuring element of all 1's.
You can use the combination of above morph_erode/dilate functions for this.
"""
# TO DO: implement your solution here
# close: dilate and then erode
dilate_img = morph_dilate(img)
close_img = morph_erode(dilate_img)
close_img = close_img.astype(np.uint8)
return close_img
def denoise(img):
"""
:param img: numpy.ndarray(int), image
:return denoise_img: numpy.ndarray(int), image, same size as the input image
Remove noises from binary image using morphology operations.
If you convert the dtype of input binary image from int to bool,
make sure to convert the dtype of returned image back to int.
"""
# TO DO: implement your solution here
#for denoising open and then close
open_img = morph_open(img)
denoise_img = morph_close(open_img)
denoise_img = denoise_img.astype(np.uint8)
return denoise_img
def boundary(img):
"""
:param img: numpy.ndarray(int), image
:return denoise_img: numpy.ndarray(int), image, same size as the input image
Extract boundaries from binary image using morphology operations.
If you convert the dtype of input binary image from int to bool,
make sure to convert the dtype of returned image back to int.
"""
# TO DO: implement your solution here
#boundary: erode and substract eroded image from denoised image
erode_img = morph_erode(img)
bound_img = img - erode_img
bound_img = bound_img.astype(np.uint8)
return bound_img
if __name__ == "__main__":
img = imread('task3.png', IMREAD_GRAYSCALE)
denoise_img = denoise(img)
imwrite('results/task3_denoise.jpg', denoise_img)
bound_img = boundary(denoise_img)
imwrite('results/task3_boundary.jpg', bound_img)