-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexploration_examples.py
220 lines (188 loc) · 7.98 KB
/
exploration_examples.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
from safe_train import *
def safe_training_loop(input_interval, desired_interval, x, y, verbose=False):
normalizer = layers.Normalization(
input_shape=[
1,
],
axis=None,
)
normalizer.adapt(x)
inputs = tf.keras.Input(shape=(1,))
# input -> normalizer -> dense1 -> dense1
# outputs = layers.Dense(units=1)(layers.Dense(units=1)(normalizer(inputs)))
# input -> dense1
outputs = layers.Dense(units=1)(inputs)
EXPLORATION_BUDGET = 10
regression_model = tf.keras.Model(inputs, outputs)
regression_model.compile(
# run_eagerly=True,
)
optimizer = tf.keras.optimizers.Adam(learning_rate=0.1)
loss_fn = tf.keras.losses.MeanSquaredError()
# init to None but write on epoch 0; weights empty before first grad application
last_safe_weights = None
last_safe_epoch = 0
num_unsafe_epochs = 0
epochs = 40
for epoch in range(epochs):
if verbose:
print("*" * 20)
print(f"\nStart of epoch {epoch}")
with tf.GradientTape() as tape:
y_pred = regression_model(x, training=True) # Forward pass
y_pred = tf.squeeze(y_pred)
# Compute the loss value
# (the loss function is configured in `compile()`)
loss = loss_fn(y, y_pred)
# Compute gradients
trainable_vars = regression_model.trainable_variables
gradients = tape.gradient(loss, trainable_vars)
# Update weights
optimizer.apply_gradients(zip(gradients, trainable_vars))
# first time only, store weights to avoid empty weights
if epoch == 0:
last_safe_weights = regression_model.get_weights()
output_interval, _ = propagate_interval(
input_interval, regression_model, graph=False
)
print(input_interval)
print(output_interval)
if type(output_interval) is list:
if len(output_interval) == 1:
output_interval = output_interval[0]
else:
raise NotImplementedError("Output interval was interval of length > 1")
print("With Marabou:\n")
tf.saved_model.save(regression_model, "tmp")
network = Marabou.read_tf("tmp", modelType="savedModel_v2")
inputVars = network.inputVars[0][0]
outputVars = network.outputVars[0][0]
print("adding constraints")
print(inputVars[0], ">", input_interval[0].inf)
network.setLowerBound(inputVars[0], input_interval[0].inf)
print(inputVars[0], "<", input_interval[0].sup)
network.setUpperBound(inputVars[0], input_interval[0].sup)
print(outputVars[0], ">", desired_interval[0].inf)
print(outputVars[0], "<", desired_interval[0].sup)
# network.setLowerBound(outputVars[0], desired_interval[0].inf)
# network.setUpperBound(outputVars[0], desired_interval[0].sup)
ineq1 = MarabouCore.Equation(MarabouCore.Equation.LE)
ineq1.addAddend(outputVars[0], 1)
ineq1.setScalar(1.0)
ineq2 = MarabouCore.Equation(MarabouCore.Equation.GE)
ineq2.addAddend(outputVars[0], 1)
ineq2.setScalar(4.0)
disjunction = [[ineq1], [ineq2]]
network.addDisjunctionConstraint(disjunction)
_, vals, stats = network.solve("marabou.log")
if vals is None:
print("UNSAT, so we are safe?")
else:
print(f"vals are {vals}")
print("\n\nWithout:\n")
if output_interval not in desired_interval:
if verbose:
print(f"safe region test FAILED, interval was {output_interval}")
print(regression_model.layers[-1].weights)
print("output interval", output_interval)
num_unsafe_epochs += 1
else:
if verbose:
print(f"safe region test passed, interval was {output_interval}")
print("output interval", output_interval)
last_safe_weights = regression_model.get_weights()
last_safe_epoch = epoch
num_unsafe_epochs = 0
if num_unsafe_epochs == EXPLORATION_BUDGET:
if verbose:
print(
f"Restarting training from last known safe set of weights, "
f"as unsafe epoch tolerance {EXPLORATION_BUDGET} was reached. "
f"Weights are {last_safe_weights}"
)
regression_model.set_weights(last_safe_weights)
else:
# Update metrics (includes the metric that tracks the loss)
regression_model.compiled_metrics.update_state(y, y_pred)
# Return a dict mapping metric names to current value
return regression_model
def safe_training_loop_large_network():
x = np.linspace(-10, 10, 100)
y = x**2
normalizer = layers.Normalization(
input_shape=[
1,
],
axis=None,
)
normalizer.adapt(x)
inputs = tf.keras.Input(shape=(1,))
# input -> normalizer -> dense1linear -> dense64 relu --x3--> dense1linear
outputs = layers.Dense(units=1, activation="linear")(
layers.Dense(units=64, activation="relu")(
layers.Dense(units=64, activation="relu")(
layers.Dense(units=64, activation="relu")(
layers.Dense(units=1)(normalizer(inputs))
)
)
)
)
input_interval, desired_interval = interval[-8, -5], interval[15, 70]
EXPLORATION_BUDGET = 10
regression_model = tf.keras.Model(inputs, outputs)
regression_model.compile(
# run_eagerly=True,
)
optimizer = tf.keras.optimizers.Adam(learning_rate=0.1)
loss_fn = tf.keras.losses.MeanSquaredError()
# init to None but write on epoch 0; weights empty before first grad application
last_safe_weights = None
last_safe_epoch = 0
num_unsafe_epochs = 0
epochs = 40
for epoch in range(epochs):
print(f"\nStart of epoch {epoch}")
with tf.GradientTape() as tape:
y_pred = regression_model(x, training=True) # Forward pass
# Compute the loss value
# (the loss function is configured in `compile()`)
loss = loss_fn(y, y_pred)
# Compute gradients
trainable_vars = regression_model.trainable_variables
gradients = tape.gradient(loss, trainable_vars)
# Update weights
optimizer.apply_gradients(zip(gradients, trainable_vars))
# first time only, store weights to avoid empty weights
if epoch == 0:
last_safe_weights = optimizer.get_weights()
# print("propagating interval")
output_interval, _ = propagate_interval(
input_interval, regression_model, graph=False
)
if type(output_interval) is list:
if len(output_interval) == 1:
output_interval = output_interval[0]
else:
raise NotImplementedError("Output interval was interval of length > 1")
if output_interval not in desired_interval:
print(f"safe region test FAILED, interval was {output_interval}")
# print(regression_model.layers[-1].weights)
num_unsafe_epochs += 1
else:
print(f"safe region test passed, interval was {output_interval}")
# TODO: use weights from network, NOT optimizer
last_safe_weights = optimizer.get_weights()
last_safe_epoch = epoch
num_unsafe_epochs = 0
if num_unsafe_epochs == EXPLORATION_BUDGET:
print(
f"Restarting training from last known safe set of weights, "
f"as unsafe epoch tolerance {EXPLORATION_BUDGET} was reached. "
f"Weights are {last_safe_weights}"
)
optimizer.set_weights(last_safe_weights)
else:
# Update metrics (includes the metric that tracks the loss)
regression_model.compiled_metrics.update_state(y, y_pred)
# Return a dict mapping metric names to current value
return regression_model