-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtranscribe.py
47 lines (39 loc) · 1.41 KB
/
transcribe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import whisper # type: ignore
import numpy as np
class Transcribe:
__model: whisper.Whisper
def __init__(self) -> None:
self.__model = whisper.load_model("base")
def transcribe(
self,
audio: np.ndarray[
np.float64,
np.dtype[np.float64],
],
duration: int,
sample_rate: int,
) -> whisper.DecodingResult:
# return self.__model.transcribe(audio)
audio = np.reshape(audio, (duration * sample_rate,)) # type: ignore
padded_audio: np.ndarray[
np.float64,
np.dtype[np.float64],
] = whisper.pad_or_trim( # type: ignore
array=audio,
)
# make log-Mel spectrogram and move to the same device as the model
mel = whisper.log_mel_spectrogram(padded_audio) # type: ignore
mel = mel.to(self.__model.device)
# detect the spoken language
# _, probs = self.__model.detect_language(mel) # type: ignore
# print(f"Detected language: {max(probs, key=probs.get)}") # type: ignore
# decode the audio
options = whisper.DecodingOptions(
fp16=False,
language="en",
suppress_blank=False,
)
# only does <=30s at a time:
result = whisper.decode(self.__model, mel, options)
# print(f"Decoded text: {result.text}") # type: ignore
return result # type: ignore