-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtype2.py
44 lines (39 loc) · 2.33 KB
/
type2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from keras import Input, Model
from keras.layers import Dense
from models.eval import eval_gabel_ann
from dataset.makeTrainingData import makeGabelTrainingData
from models.utils import normalizeBatchSize
from utils.KerasCallbacks import callbackdict
def makeGabelArch(o_X, o_Y, X, Y, datasetname, regression=False, epochs=2000, val_split=0, shuffle=True, batch_size=32,
optimizer=None, onehot=True, multigpu=False, callbacks = None, networklayers=[13,13],
rootdir="rootdir",alpha=0.8, makeTrainingData=None):
#model = makeGabelClassifierModel(X.shape[1]*2, networklayers=[13,13]) #always 2 x 13 hidden layers
if makeTrainingData is None:
makeTrainingData = makeGabelTrainingData
input1 = Input(shape=(X.shape[1]*2,), dtype="float32")
hl1 = Dense(13, activation="sigmoid",kernel_initializer="random_uniform")(input1)
hl2 = Dense(13, activation="sigmoid",kernel_initializer="random_uniform")(hl1)
hl3 = Dense(13, activation="sigmoid",kernel_initializer="random_uniform")(hl2)
output = Dense(1, activation="sigmoid",kernel_initializer="random_uniform")(hl3)
model = Model(inputs=[input1],outputs=[output])
model.compile(optimizer=optimizer["constructor"](),
loss='binary_crossentropy',
metrics=['accuracy'])
gabel_features, gabel_targets, Y1, Y2 = makeTrainingData(X, Y, regression, distance=False)
if all([optimizer is not None, optimizer["batch_size"] is not None]):
batch_size = gabel_features.shape[0]
else:
batch_size = normalizeBatchSize(X, batch_size)
filepath = rootdir + "gabelmodel"
run_callbacks = list()
ret_callbacks = dict()
for callback in callbacks:
cbo = callbackdict[callback]["callback"](o_X, o_Y, X, Y,
batch_size, eval_gabel_ann,
datasetname,filepath,save_best_only=True,gabel=True)
run_callbacks.append(cbo)
ret_callbacks[callback] = cbo
history = model.fit(gabel_features, gabel_targets, validation_split=val_split,
shuffle=shuffle, epochs=epochs, batch_size=gabel_features.shape[0],
verbose=0, callbacks=run_callbacks)
return model, history, ret_callbacks, None # this type does not support embeddings as G(X) = I(X) = X