-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtype4.py
371 lines (295 loc) · 16.4 KB
/
type4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
from keras import Model, Input
from keras.layers import Subtract, Dense, Lambda, Concatenate
from keras.models import clone_model
from models.eval import eval_dual_ann
from dataset.makeTrainingData import makeGabelTrainingData,\
makeDualSharedArchData
from models.utils import normalizeBatchSize, makeAndCompileNormalModel,\
makeNormalModelLayers
from utils.KerasCallbacks import callbackdict, CustomModelCheckPoint
from utils.keras_utils import keras_sqrt_diff
#t4i4
def makeDualArch(o_x, o_Y, X, Y, datasetname, regression=False, epochs=2000, val_split=0, shuffle=True,
batch_size=32, optimizer=None, onehot=True,
multigpu=False, callbacks=None, trainratio=0.2, networklayers=[13,13],
rootdir="rootdir",alpha=0.8, makeTrainingData=None):
if isinstance(networklayers[0],list):
# this means user has specified different layers
# for g and c.. but we do not care as we only have layers for G(x)
networklayers = networklayers[0]
model, output = makeAndCompileNormalModel(Y.shape[1], X.shape[1], optimizer=optimizer,
regression=regression, onehot=onehot,
multigpu=multigpu, activation_function="relu",
networklayers=networklayers)
if makeTrainingData is None:
makeTrainingData = makeGabelTrainingData
history = model.fit(X, Y, validation_split=val_split,
shuffle=shuffle, epochs=epochs, batch_size=batch_size,
verbose=0, callbacks=callbacks)
layers = model.layers
model_clone = clone_model(model)
model_clone.set_weights(model.get_weights())
clone_layers = model_clone.layers
second_last_layer_orig = layers[len(layers)-2]
second_last_layer_clone = clone_layers[len(layers)-2]
subtracted = Subtract()([second_last_layer_orig.output,second_last_layer_clone.output])
dense_1 = Dense(10, activation="relu")(subtracted)
dense_2 = Dense(10, activation="relu")(dense_1)
output = Dense(1, activation="linear")(dense_2)
for layer in layers:
layer.trainable = False
for layer in clone_layers:
layer.trainable = False
layer.name = layer.name+"_clone"
model = Model(inputs=[model.input,model_clone.input],outputs=[output])
embeddingmodel = Model(inputs=[model.input],
outputs=[second_last_layer_orig])
features, targets = makeTrainingData(X, Y, regression)
if all([optimizer is not None, optimizer["batch_size"] is not None]):
batch_size = features.shape[0]
else:
batch_size = normalizeBatchSize(X, batch_size)
run_callbacks = list()
ret_callbacks = dict()
filepath = rootdir + "t4i4-weights.best.hdf5"
for callback in callbacks:
cbo = callbackdict[callback]["callback"](o_X, o_Y, X, Y,
batch_size, eval_dual_ann,
datasetname, filepath, save_best_only=True)
run_callbacks.append(cbo)
ret_callbacks[callback] = cbo
filepath = rootdir+"saved-model-{epoch:02d}-{accuracy:.2f}.hdf5"
run_callbacks.append(CustomModelCheckPoint(filepath="t4i4", rootdir=rootdir))
model.compile(loss='binary_cross_entropy', optimizer=optimizer["constructor"](),
metrics=['accuracy'])
training_data = [features[:,0:X.shape[1]],features[:,X.shape[1]:2*X.shape[1]]]
history = model.fit(training_data, targets,
shuffle=True, epochs=epochs, batch_size=batch_size,
verbose=0, callbacks=run_callbacks)
return model, history, ret_callbacks, embeddingmodel
def makeEndToEndDualArch(o_X, o_Y, X, Y, datasetname, regression=False, epochs=2000, val_split=0, shuffle=True,
batch_size=32, optimizer=None, onehot=True,
multigpu=False, callbacks=None, trainratio=0.2, networklayers=[13, 13],
rootdir="rootdir", alpha=0.8, makeTrainingData=None):
input1,output1,layers1 = makeNormalModelLayers(n=Y.shape[1], inp=X.shape[1], networklayers=networklayers,
regression=regression, activation_function="relu")
input2,output2,layers2 = makeNormalModelLayers(n=Y.shape[1], inp=X.shape[1], networklayers=networklayers,
regression=regression, activation_function="relu")
if makeTrainingData is None:
makeTrainingData = makeDualSharedArchData
#history = model.fit(X, Y, validation_split=val_split,
# shuffle=shuffle, epochs=epochs, batch_size=batch_size,
# verbose=0, callbacks=callbacks)
#clone_layers = model_clone.layers
#second_last_layer_orig = layers[ln(layers)-2]
#second_last_layer_clone = clone_layers[len(layers)-2]
subtracted = Subtract()([layers1[len(layers1)-2],layers2[len(layers2)-2]])
dense_1 = Dense(10, activation="relu")(subtracted)
dense_2 = Dense(10, activation="relu")(dense_1)
output = Dense(1, activation="relu")(dense_2)
#for layer in layers2:
# layer.name = layer.name+"_clone"
model = Model(inputs=[input1,input2],outputs=[output,output1,output2])
# comb = np.zeros((features.shape[0],features.shape[1]+targets.shape[1]))
# comb[:,0:features.shape[1]] = features
# comb[:,features.shape[1]:features.shape[1]+targets.shape[1]]
#
# np.random.shuffle(comb)
# subset = comb[:,]
#kfold = KFold(n_splits=int(1.0/trainratio)) # for 80% trainingset
#kfold = KFold(n_splits=2)
#training_split_indexes, test_split_indexes = next(kfold.split(X, Y))
features, targets, Y1, Y2 = makeTrainingData(X, Y, regression)
val_features, val_targets, val_Y1, val_Y2 = makeTrainingData(o_X, o_Y, regression)
model.compile(optimizer=optimizer["constructor"](),
loss='binary_crossentropy',
metrics=['accuracy'],loss_weights=[5,1.,1.])
#model.compile(loss='mean_squared_error', optimizer=Adam(lr=0.002),
# metrics=['accuracy'])
training_data = [features[:,0:X.shape[1]],features[:,X.shape[1]:2*X.shape[1]]]
val_training_data = [val_features[:, 0:X.shape[1]], val_features[:, X.shape[1]:2 * X.shape[1]]]
target_data = [targets,Y1,Y2]
if all([optimizer is not None, optimizer["batch_size"] is not None]):
batch_size = features.shape[0]
else:
batch_size = normalizeBatchSize(X, batch_size)
val_target_data = [val_targets, val_Y1, val_Y2]
#tb_callback = keras.callbacks.TensorBoard(log_dir='./graph', histogram_freq=1,
# write_graph=True, write_images=True)
filepath = rootdir + "dualshared-weights.best.hdf5"
run_callbacks = list()
ret_callbacks = dict()
for callback in callbacks:
cbo = callbackdict[callback]["callback"](o_X, o_Y, X, Y,
batch_size, eval_dual_ann,
datasetname,filepath,save_best_only=True)
run_callbacks.append(cbo)
ret_callbacks[callback] = cbo
history = model.fit(training_data, target_data,
shuffle=True, epochs=epochs, batch_size=batch_size,
verbose=0, callbacks=run_callbacks, validation_data=[val_training_data,val_target_data])
return model, history, ret_callbacks
def makeEndToEndDualArchShared(o_X, o_Y, X, Y, datasetname, regression=False,
epochs=2000, val_split=0, shuffle=True,
batch_size=32, optimizer=None, onehot=True,
multigpu=False, callbacks=None, trainratio=0.2,
networklayers=[13, 13], rootdir="rootdir",alpha=0.8, makeTrainingData=None):
input1 = Input(shape=(X.shape[1],), dtype="float32")
input2 = Input(shape=(X.shape[1],), dtype="float32")
if makeTrainingData is None:
makeTrainingData = makeDualSharedArchData
# make G(x)
t1 = input1
t2 = input2
for networklayer in networklayers:
dl1 = Dense(int(networklayer),
activation="relu",input_shape=t1.shape)#,activity_regularizer=l2(0.01))
#dl2 = Dense(int(networklayer),
# activation="relu",input_shape=t2.shape)#,activity_regularizer=l2(0.01))
#create_shared_weights(dl,dl2,t1._keras_shape)
t1 = dl1(t1)
t2 = dl1(t2)
#encoded_i1 = dl1(t1)
#encoded_i2 = dl2(t2)
#subtracted = Subtract()([encoded_i1,encoded_i2])
# TODO: We had 5 layers here (from subtract to output), maybe compare
# different "top-layers" vs (the combination) "bottom-layers", in which
# case we need more than one layers paramater
# make C(x,y)
o_t = Lambda(keras_sqrt_diff)([t1, t2])
for networklayer in networklayers:
o_t = Dense(int(networklayer), activation="relu")(o_t)
#make class output from G(x) to get two more signal sources
inner_output = None
if regression is True: # regression or 1 output classification
inner_output1 = Dense(Y.shape[1], activation='linear',
kernel_initializer="random_uniform",name="reg_output1")
inner_output2 = Dense(Y.shape[1], activation='linear',
kernel_initializer="random_uniform",name="reg_output2")
else: # onehot
inner_output1 = Dense(Y.shape[1], activation='softmax',name="class1_output")
inner_output2 = Dense(Y.shape[1], activation='softmax',name="class2_output")
#create_shared_weights(inner_output1,inner_output2,encoded_i1._keras_shape)
output = Dense(1, activation="sigmoid",name="dist_output")(o_t)
output1 = inner_output1(t1)
output2 = inner_output2(t2)
model = Model(inputs=[input1,input2],outputs=[output,output1,output2])
#model.summary()
features, targets, Y1, Y2 = makeTrainingData(X, Y, regression)
val_features, val_targets, val_Y1, val_Y2 = makeTrainingData(o_X, o_Y, regression)
if all([optimizer is not None, optimizer["batch_size"] is not None]):
batch_size = features.shape[0]
else:
batch_size = normalizeBatchSize(X, batch_size)
if regression is not True:
loss_dict = {'dist_output':'binary_crossentropy','class1_output':'categorical_crossentropy','class2_output':'categorical_crossentropy'}
lossweight_dict={'dist_output':alpha,'class1_output':(1.0-alpha)/2.0,'class2_output':(1.0-alpha)/2.0}
else:
loss_dict = {'dist_output':'mean_squared_error','reg_output1':'mean_squared_error','reg_output2':'mean_squared_error'}
lossweight_dict={'dist_output':alpha,'reg_output1':(1.0-alpha)/2.0,'reg_output2':(1.0-alpha)/2.0}
model.compile(optimizer=optimizer["constructor"](),
loss=loss_dict,
metrics=['accuracy'],loss_weights=lossweight_dict)
training_data = [features[:,0:X.shape[1]],features[:,X.shape[1]:2*X.shape[1]]]
val_training_data = [val_features[:, 0:X.shape[1]], val_features[:, X.shape[1]:2 * X.shape[1]]]
target_data = [targets,Y1,Y2]
val_target_data = [val_targets, val_Y1, val_Y2]
run_callbacks = list()
ret_callbacks = dict()
filepath = rootdir + "dualshared-weights.best.hdf5"
for callback in callbacks:
cbo = callbackdict[callback]["callback"](o_X, o_Y, X, Y,
batch_size, eval_dual_ann,
datasetname,filepath,save_best_only=True)
run_callbacks.append(cbo)
ret_callbacks[callback] = cbo
# check 5 epochs
test = np.hstack((features,targets))
batch_size = features.shape[0]
history = model.fit(training_data, target_data,
shuffle=True, epochs=epochs, batch_size=batch_size,
verbose=0, callbacks=run_callbacks,
validation_data=[val_training_data, val_target_data])
return model, history, ret_callbacks
def dees_resnet(o_X, o_Y, X, Y, datasetname, regression=False,
epochs=2000, val_split=0, shuffle=True,
batch_size=32, optimizer=None, onehot=True,
multigpu=False, callbacks=None, trainratio=0.2,
networklayers=[13, 13], rootdir="rootdir",alpha=0.8, makeTrainingData=None):
if makeTrainingData is None:
makeTrainingData = makeDualSharedArchData
input1 = Input(shape=(X.shape[1],), dtype="float32")
input2 = Input(shape=(X.shape[1],), dtype="float32")
t1 = input1
t2 = input2
for networklayer in networklayers:
dl1 = Dense(int(networklayer),
activation="relu",input_shape=t1.shape)#,activity_regularizer=l2(0.01))
#dl2 = Dense(int(networklayer),
# activation="relu",input_shape=t2.shape)#,activity_regularizer=l2(0.01))
#create_shared_weights(dl,dl2,t1._keras_shape)
t1 = dl1(t1)
t2 = dl1(t2)
#encoded_i1 = dl1(t1)
#encoded_i2 = dl2(t2)
#subtracted = Subtract()([encoded_i1,encoded_i2])
# TODO: We had 5 layers here (from subtract to output), maybe compare
# different "top-layers" vs (the combination) "bottom-layers", in which
# case we need more than one layers paramater
subbed = Subtract()([t1,t2])
#concatted = Concatenate()([t1,t2]) #"residual" to carry over the signals lost in the subtraction..?
o_t = Concatenate()([t1,t2,subbed])
#o_t = Dense(int(networklayer[0]),activation="relu")()
for networklayer in networklayers:
o_t = Dense(int(networklayer), activation="relu")(o_t)
inner_output = None
if regression is True: # regression or 1 output classification
inner_output1 = Dense(Y.shape[1], activation='linear',
kernel_initializer="random_uniform",name="reg_output1")
inner_output2 = Dense(Y.shape[1], activation='linear',
kernel_initializer="random_uniform",name="reg_output2")
else: # onehot
inner_output1 = Dense(Y.shape[1], activation='softmax',name="class1_output")
inner_output2 = Dense(Y.shape[1], activation='softmax',name="class2_output")
#create_shared_weights(inner_output1,inner_output2,encoded_i1._keras_shape)
output = Dense(1, activation="sigmoid",name="dist_output")(o_t)
output1 = inner_output1(t1)
output2 = inner_output2(t2)
model = Model(inputs=[input1,input2],outputs=[output,output1,output2])
#model.summary()
features, targets, Y1, Y2 = makeTrainingData(X, Y, regression)
val_features, val_targets, val_Y1, val_Y2 = makeTrainingData(o_X, o_Y, regression)
if all([optimizer is not None, optimizer["batch_size"] is not None]):
batch_size = features.shape[0]
else:
batch_size = normalizeBatchSize(X, batch_size)
if regression is not True:
loss_dict = {'dist_output':'binary_crossentropy','class1_output':'categorical_crossentropy','class2_output':'categorical_crossentropy'}
lossweight_dict={'dist_output':alpha,'class1_output':(1.0-alpha)/2.0,'class2_output':(1.0-alpha)/2.0}
else:
loss_dict = {'dist_output':'mean_squared_error','reg_output1':'mean_squared_error','reg_output2':'mean_squared_error'}
lossweight_dict={'dist_output':alpha,'reg_output1':(1.0-alpha)/2.0,'reg_output2':(1.0-alpha)/2.0}
model.compile(optimizer=optimizer["constructor"](),
loss=loss_dict,
metrics=['accuracy'],loss_weights=lossweight_dict)
training_data = [features[:,0:X.shape[1]],features[:,X.shape[1]:2*X.shape[1]]]
val_training_data = [val_features[:, 0:X.shape[1]], val_features[:, X.shape[1]:2 * X.shape[1]]]
target_data = [targets,Y1,Y2]
val_target_data = [val_targets, val_Y1, val_Y2]
run_callbacks = list()
ret_callbacks = dict()
filepath = rootdir + "dualshared-weights.best.hdf5"
for callback in callbacks:
cbo = callbackdict[callback]["callback"](o_X, o_Y, X, Y,
batch_size, eval_dual_ann,
datasetname,filepath,save_best_only=True)
run_callbacks.append(cbo)
ret_callbacks[callback] = cbo
# check 5 epochs
test = np.hstack((features,targets))
batch_size = features.shape[0]
history = model.fit(training_data, target_data,
shuffle=True, epochs=epochs, batch_size=batch_size,
verbose=0, callbacks=run_callbacks,
validation_data=[val_training_data, val_target_data])
return model, history, ret_callbacks