@@ -69,20 +69,25 @@ can be used as input to my FaceNet TensorRT implementation.
69
69
You will need all models from the repo in the [ mtCNNModels] ( ./mtCNNModels ) folder so please do this
70
70
to download them:
71
71
``` bash
72
- cd path/to/project/mtCNNModels
73
- wget https://github.com/PKUZHOU/MTCNN_FaceDetection_TensorRT/blob/master/det1_relu.caffemodel
74
- wget https://github.com/PKUZHOU/MTCNN_FaceDetection_TensorRT/blob/master/det1_relu.prototxt
75
- wget https://github.com/PKUZHOU/MTCNN_FaceDetection_TensorRT/blob/master/det2_relu.caffemodel
76
- wget https://github.com/PKUZHOU/MTCNN_FaceDetection_TensorRT/blob/master/det2_relu.prototxt
77
- wget https://github.com/PKUZHOU/MTCNN_FaceDetection_TensorRT/blob/master/det3_relu.caffemodel
78
- wget https://github.com/PKUZHOU/MTCNN_FaceDetection_TensorRT/blob/master/det3_relu.prototxt
72
+ # go to one above project,
73
+ cd path/to/project/..
74
+ # clone PKUZHOUs repo,
75
+ git clone https://github.com/PKUZHOU/MTCNN_FaceDetection_TensorRT
76
+ # and move models into mtCNNModels folder
77
+ mv MTCNN_FaceDetection_TensorRT/det* path/to/project/mtCNNModels
79
78
```
79
+ After doing so you should have the following files in your [ mtCNNModels] ( ./mtCNNModels ) folder:<br >
80
+ * det1_relu.caffemodel
81
+ * det1_relu.prototxt
82
+ * det2_relu.caffemodel
83
+ * det2_relu.prototxt
84
+ * det3_relu.caffemodel
85
+ * det3_relu.prototxt
86
+ * README.md
87
+
80
88
Done you are ready to build the project!
81
89
82
90
#### 5. Build the project
83
- _ NOTE:_ This step might take a while when done the first time. TensorRT
84
- now parses and serializes the model from .uff to a runtime engine
85
- (.engine file).
86
91
``` bash
87
92
mkdir build && cd build
88
93
cmake -DCMAKE_BUILD_TYPE=Release ..
@@ -106,6 +111,10 @@ you have opened your terminal and put in the name of the person you want to add.
106
111
```
107
112
Press "** Q** " to quit and to show the stats (fps).
108
113
114
+ _ NOTE:_ This step might take a while when done the first time. TensorRT
115
+ now parses and serializes the model from .uff to a runtime engine
116
+ (.engine file).
117
+
109
118
## Performance
110
119
Performance on ** NVIDIA Jetson Nano**
111
120
* ~ 60ms +/- 20ms for face detection using mtCNN
@@ -125,4 +134,4 @@ were trained on.
125
134
126
135
## Info
127
136
Niclas Wesemann <br >
128
-
137
+
0 commit comments