-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbdd_arrow_loading.py
172 lines (124 loc) · 5.21 KB
/
bdd_arrow_loading.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import os
import time
import random
import argparse
import pyarrow as pa
from tqdm import tqdm
import numpy as np
from PIL import Image
import torch
import torch.distributed as dist
from torch.utils.data import Dataset, DataLoader, DistributedSampler
from torchvision import transforms
from torchvision import tv_tensors
from torchvision.transforms import v2
def setup():
# Initializes a communication group using 'nccl' as the backend for GPU communication.
dist.init_process_group(backend='nccl')
world_size = dist.get_world_size()
# Get the identifier of each process within a node
local_rank = int(os.getenv('LOCAL_RANK'))
# Get the global identifier of each process within the distributed system
rank = int(os.environ['RANK'])
# Creates a torch.device object that represents the GPU to be used by this process.
device = torch.device('cuda', local_rank)
# Sets the default CUDA device for the current process,
# ensuring all subsequent CUDA operations are performed on the specified GPU device.
torch.cuda.set_device(device)
# Different random seed for each process.
torch.random.manual_seed(1000 + dist.get_rank())
return local_rank, rank, device, world_size
def print0(*args):
if torch.distributed.get_rank() == 0:
print(*args)
class ArrowDatasetMultiFrame(Dataset):
def __init__(self, arrow_files, num_frames=4, transform=None):
self.arrow_files = arrow_files
self.num_frames = num_frames
self._len = []
self.lengths = []
self.keys = []
self.lengthsFour = []
for i, file in enumerate(os.listdir(self.arrow_files)):
with pa.OSFile(os.path.join(self.arrow_files, file), 'rb') as f:
reader = pa.ipc.open_file(f)
for j in range(reader.num_record_batches):
batch = reader.get_batch(j)
frame_length = batch['shape'][0].as_py()[0]
if frame_length % self.num_frames != 0:
frame_length = frame_length - (frame_length % self.num_frames)
self.lengthsFour.append(list(range(0, frame_length, self.num_frames)))
self._len.append(len(self.lengthsFour[-1])-1)
self.keys.append([j, i])
self.readers = [pa.ipc.open_file(pa.OSFile(os.path.join(self.arrow_files, file), 'rb')) for file in os.listdir(self.arrow_files)]
self._len = np.array(self._len)
self.lengths_cum = np.cumsum(self._len)
self.total_length = self.lengths_cum[-1]
self.transform = transform
def __len__(self):
return self.total_length
def __getitem__(self, idx):
key_index = np.searchsorted(self.lengths_cum, idx)
file_key, file_idx = self.keys[key_index]
frame_index = abs(self.lengths_cum[key_index] - idx)
frame_index = self.lengthsFour[key_index][frame_index]
# print(f"key_index, frame_index {key_index, frame_index}")
row = self.readers[file_idx].get_batch(file_key)
row_shapes = row['shape'][0].as_py()
array_from_binary = np.frombuffer(row['frames'][0].as_py(), dtype=np.uint8).reshape(row_shapes)
images = torch.tensor(array_from_binary[frame_index:frame_index+self.num_frames] )
images = images.permute(0, 3, 1, 2)
if self.transform is not None:
images = self.transform(images)
return images
def set_seed(seed=1000):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
random.seed(seed)
np.random.seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def seed_worker(worker_id):
worker_seed = torch.initial_seed() % 2**32
np.random.seed(worker_seed)
random.seed(worker_seed)
if __name__ == "__main__":
args = argparse.ArgumentParser()
args.add_argument("--size", type=int, default=224)
args.add_argument("--batch_size", type=int, default=256)
args.add_argument("--pyarrow_dir", type=str, default="/p/scratch/genai-ad/benassou1/bdd_arrows/byte_bdd")
args = args.parse_args()
local_rank, rank, device, world_size = setup()
print0('PyArrow files access ')
print0(f'with {args}')
set_seed()
g = torch.Generator()
g.manual_seed(0)
transform = v2.Compose([
v2.Resize((args.size, args.size), antialias=True),
])
t0 = time.perf_counter()
dataset = ArrowDatasetMultiFrame(arrow_files=args.pyarrow_dir, transform=transform)
print0(f"Dataset initialization took: {time.perf_counter()-t0}")
sampler = DistributedSampler(
dataset,
shuffle=True,
seed=1000,
)
dataloader = DataLoader(
dataset,
batch_size=args.batch_size,
num_workers=int(os.getenv('SRUN_CPUS_PER_TASK')),
pin_memory=True,
shuffle=False,
sampler=sampler,
worker_init_fn=seed_worker,
generator=g,
)
print0(f"data {len(dataloader)}")
t1 = time.perf_counter()
for data in dataloader:
data = data.to(device)
print(data.shape)
print0(f"Loading took: {time.perf_counter()-t1}")