-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAIF.agda
311 lines (244 loc) · 8.8 KB
/
AIF.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
-- Argument Interchange Format
{-
# Core ontology
- Аргументы / сеть аргументов
- Коммуникация (locutions, protocols)
- Контекст (агенты, теории,...) (от чего зависит смысл)
## Аргументы
- Направленный граф: I-node (information), S-node (scheme).
- 3 типа схем: inference, preference, conflict (RA, PA, CA).
- Рёбра не имеют атрибутов. Их тип и пр. могут быть вычислены.
- 2 типа рёбер: scheme, data.
+ Data Edge: I-node → S-node (информация для схемы)
+ Scheme Edge: S-node → I-node | S-node (вывод / цель схемы)
-
## Аргументы: Non-Core features
- Атрибуты узлов: текст, тип, сила, полярность (про, контра),...
- типы рёбер: support, attack, inference,... (?)
## Коммуникация
- Типы локуций: assert, question, challenge,...
- Свойства локуций: автор, адресат, онтологии, язык, протокол, содержание,...
## Контекст
- Коммуникации: Участники, топик, commitment stores,...
- Аргументации: схемы, теории, онтологии.
-}
module AIF where
open import Data.Bool
open import Data.Empty using (⊥)
open import Data.Float
open import Data.List
open import Data.List.Membership.Propositional
open import Data.List.Relation.Binary.Equality.DecPropositional --Properties --using (≡-dec)
open import Data.List.Properties --using (≡-dec)
open import Data.Maybe
open import Data.Nat as ℕ using (ℕ)
open import Data.Product
open import Data.String as S renaming (_++_ to _+++_)
open import Data.Unit using (⊤; tt)
open import Data.Vec as Vec renaming (_∷_ to _∷v_)
open import Relation.Binary using (Decidable)
open import Relation.Binary.PropositionalEquality using (_≡_; _≢_; refl)
open import Relation.Nullary
open import ArgPrelude
open import LabelAlgebra -- nodes are labeled
renaming (⊤ to LA⊤; ⊥ to LA⊥; _∧_ to _LA∧_; _∨_ to _LA∨_)
instance
ℕEq : BEq ℕ ℕ
_=ᵇ_ {{ℕEq}} m n = m ℕ.≡ᵇ n
-- Roles ----------------------------------------------------------
data Role : Set where
role : String → Role
-- RA-nodes
эксперт = role "эксперт"
говорит = role "говорит"
область = role "область"
факт = role "факт"
объяснение = role "объяснение"
вывод = role "вывод"
пример = role "пример"
все-признают = role "все-признают"
поддержка = role "поддержка"
атака = role "атака"
причина = role "причина"
причинная-связь = role "причинная-связь"
следствие = role "следствие"
знак = role "знак"
связь-со-знаком = role "связь-со-знаком"
цель = role "цель"
альтернатива = role "альтернатива"
неверно = role "неверно"
верно = role "верно"
событие1 = role "событие1"
событие2 = role "событие2"
-- CA-nodes
conflicting = role "conflicting"
conflicted = role "conflicted"
-- Logic schemes
AND1 = role "AND1"
AND2 = role "AND2"
OR1 = role "OR1"
OR2 = role "OR2"
тезис = role "тезис"
отрицание = role "отрицание"
противоречие = role "противоречие"
Roles : List Role
Roles =
эксперт ∷
говорит ∷
область ∷
факт ∷
объяснение ∷
вывод ∷
пример ∷
все-признают ∷
поддержка ∷
атака ∷
conflicting ∷
conflicted ∷
AND1 ∷
AND2 ∷
OR1 ∷
OR2 ∷
[]
_≡R_ : Role → Role → Set
role r ≡R role r' = r ≡ r'
_≟R_ : Decidable _≡R_
role r ≟R role r' = r S.≟ r'
instance
REq : BEq Role Role
_=ᵇ_ {{REq}} (role x) (role y) = x S.== y
-- TODO: get rid of the dependence on order
private
_=LR_ : List Role → List Role → Bool
[] =LR [] = true
[] =LR _ = false
_ =LR [] = false
(role x ∷ xs) =LR (role y ∷ ys) = (x S.== y) ∧ xs =LR ys
_≡LR_ : List Role → List Role → Set
[] ≡LR [] = ⊤
(_ ∷ _) ≡LR [] = ⊥
[] ≡LR (_ ∷ _) = ⊥
x ≡LR y = (∀ z → (z ∈ x → z ∈ y)) × (∀ z → (z ∈ y → z ∈ x))
-- _≟LR_ : Decidable _≡LR_
-- x ≟LR y = _≡?_ ? --_≟R_ x y -- ≡-dec ? --? --x y
-- [] ≟LR [] = yes tt
-- (_ ∷ _) ≟LR [] = no λ()
-- [] ≟LR (_ ∷ _) = no λ()
-- (x ∷ xs) ≟LR (y ∷ ys) with x ≟R y | xs ≟LR ys
-- ... | yes p | yes ps = true because (ofʸ ((λ z x₁ → {!p!}) , {!!})) --yes (p , ps)
-- ... | yes _ | no ps = {!!}
-- -- ... | (role )p = yes {!p!}
-- -- x ≟LR y = ∀ (z : Role) → (z ∈? x ⇔ z ∈? y)
-- -- x ≟LR y = (∀ z → ((z ∈? x) → (_∈?_ z y))) × (∀ z → ((z ∈? y) → (_∈?_ z x)))
-- -- x ≟LR y = (All (λ z → z ∈? y) x) × (All (λ z → z ∈? x) y)
instance
LREq : BEq (List Role) (List Role)
_=ᵇ_ {{LREq}} x y = x =LR y
private
_=VR_ : ∀ {n m} → Vec Role n → Vec Role m → Bool
_=VR_ {ℕ.zero} {ℕ.zero} _ _ = true
_=VR_ {ℕ.zero} {_} _ _ = false
_=VR_ {_} {ℕ.zero} _ _ = false
_=VR_ (x ∷v xs) (y ∷v ys) = x =ᵇ y ∧ xs =VR ys
instance
VREq : ∀ {m n} → BEq (Vec Role m) (Vec Role n)
_=ᵇ_ {{VREq}} x y = x =VR y
-- Nodes -------------------------------------------------------
-- first, let's define schemes
record RA-Scheme : Set where
constructor mkRA
field
{ℕprem} : ℕ
Premises : Vec Role ℕprem
Conclusion : Role
-- Presumptions : List Role -- critical questions / условия применимости
-- Exceptions : List Role -- critical questions / исключения
record CA-Scheme : Set where
constructor mkCA
field
Conflicting : Role
Conflicted : Role
record PA-Scheme : Set where
constructor mkPA
field
Preferred : Role
Dispreferred : Role
-- two types of nodes:
-- record I-node : Set where
-- constructor mkI
-- field
-- Body : Statement
-- data S-node : Set where
-- SR : RA-Scheme → S-node
-- SC : CA-Scheme → S-node
-- SP : PA-Scheme → S-node
open RA-Scheme {{...}} public
open CA-Scheme {{...}} public
open PA-Scheme {{...}} public
-- various equalities
private
_=RA_ : RA-Scheme → RA-Scheme → Bool
_=RA_ (mkRA {n} p c) (mkRA {m} p' c') = n =ᵇ m ∧ p =ᵇ p' ∧ c =ᵇ c'
_=CA_ : CA-Scheme → CA-Scheme → Bool
(mkCA x y) =CA (mkCA x' y') = x =ᵇ x' ∧ y =ᵇ y'
_=PA_ : PA-Scheme → PA-Scheme → Bool
(mkPA x y) =PA (mkPA x' y') = x =ᵇ x' ∧ y =ᵇ y'
instance
RAEq : BEq RA-Scheme RA-Scheme
_=ᵇ_ {{RAEq}} x y = x =RA y
CAEq : BEq CA-Scheme CA-Scheme
_=ᵇ_ {{CAEq}} x y = x =CA y
PAEq : BEq PA-Scheme PA-Scheme
_=ᵇ_ {{PAEq}} x y = x =PA y
data Node : Set where
Lni : Statement → Node
Lnr : RA-Scheme → Node
Lnc : CA-Scheme → Node
Lnp : PA-Scheme → Node
-- Node equality, boolean.
private
_=N_ : Node → Node → Bool
Lni x1 =N Lni x2 = x1 =ᵇ x2
Lnr ra1 =N Lnr ra2 = ra1 =ᵇ ra2
Lnc ca1 =N Lnc ca2 = ca1 =ᵇ ca2
Lnp pa1 =N Lnp pa2 = pa1 =ᵇ pa2
_ =N _ = false
Prop←N : Node → Proposition
Prop←N (Lni s) = Statement.stprop s
Prop←N _ = mkProp "" -- should I use Maybe?
module _ {a} (A : Set a) where -- {c ℓ₁ ℓ₂} {la : LabelAlgebra c ℓ₁ ℓ₂} where
mutual
-- Nodes labeled with A.
record LNode : Set a where
constructor Ln
field
node : Node
value : A
-- Label value is not checked!
_=LN_ : LNode → LNode → Bool
Ln x1 _ =LN Ln x2 _ = x1 =N x2
instance
NEq : BEq (LNode) (LNode)
_=ᵇ_ {{NEq}} x y = x =LN y
private
_=RN_ : (Role × LNode) → (Role × LNode) → Bool
(r1 , nd1) =RN (r2 , nd2) = r1 =ᵇ r2 ∧ nd1 =ᵇ nd2
instance
RNEq : BEq (Role × LNode) (Role × LNode)
_=ᵇ_ {{RNEq}} x y = x =RN y
-- TODO: get rid of the order
private
_=LRN_ : List (Role × LNode) → List (Role × LNode) → Bool
[] =LRN [] = true
[] =LRN _ = false
_ =LRN [] = false
(x ∷ xs) =LRN (y ∷ ys) = x =ᵇ y ∧ xs =LRN ys
instance
LRNEq : BEq (List (Role × LNode)) (List (Role × LNode))
_=ᵇ_ {{LRNEq}} x y = x =LRN y
record Argument : Set a where
constructor mkArg
field
Scheme : RA-Scheme
NPremises : Vec (Maybe LNode) (RA-Scheme.ℕprem Scheme)
NConclusion : Maybe LNode