-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
81 lines (65 loc) · 2.38 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import torch
import torch.nn as nn
import torchvision.transforms as trans
class Block(nn.Module):
def __init__(self, in_ch, out_ch):
super().__init__()
self.conv1 = nn.Conv2d(in_ch, out_ch, 3, padding="same")
self.bn1 = nn.BatchNorm2d(out_ch)
self.relu = nn.ReLU()
self.conv2 = nn.Conv2d(out_ch, out_ch, 3, padding="same")
self.bn2 = nn.BatchNorm2d(out_ch)
def forward(self, x):
return self.relu(self.bn2(self.conv2(self.relu(self.bn1(self.conv1(x))))))
# return self.relu(self.conv2(self.relu(self.conv1(x))))
class Encoder(nn.Module):
def __init__(self, chs=(1, 8, 16, 32, 64, 128)):
super().__init__()
self.enc_blocks = nn.ModuleList(
[Block(chs[i], chs[i + 1]) for i in range(len(chs) - 1)]
)
self.pool = nn.MaxPool2d(2)
def forward(self, x):
ftrs = []
for block in self.enc_blocks:
x = block(x)
ftrs.append(x)
x = self.pool(x)
return ftrs
class Decoder(nn.Module):
def __init__(self, chs=(128, 64, 32, 16, 8)):
super().__init__()
self.chs = chs
self.upconvs = nn.ModuleList(
[nn.ConvTranspose2d(chs[i], chs[i + 1], 2, 2) for i in range(len(chs) - 1)]
)
self.dec_blocks = nn.ModuleList(
[Block(chs[i], chs[i + 1]) for i in range(len(chs) - 1)]
)
def forward(self, x, encoder_features):
for i in range(len(self.chs) - 1):
x = self.upconvs[i](x)
enc_ftrs = self.crop(encoder_features[i], x)
x = torch.cat([x, enc_ftrs], dim=1)
x = self.dec_blocks[i](x)
return x
def crop(self, enc_ftrs, x):
_, _, H, W = x.shape
enc_ftrs = trans.CenterCrop([H, W])(enc_ftrs)
return enc_ftrs
class Unet(nn.Module):
def __init__(
self, enc_chs=(1, 8, 16, 32, 64, 128), dec_chs=(128, 64, 32, 16, 8), num_class=1
):
super().__init__()
self.encoder = Encoder(enc_chs)
self.decoder = Decoder(dec_chs)
self.head = nn.Conv2d(dec_chs[-1], num_class, 1)
# self.retain_dim = retain_dim
def forward(self, x):
enc_ftrs = self.encoder(x)
out = self.decoder(enc_ftrs[::-1][0], enc_ftrs[::-1][1:])
out = self.head(out)
# if self.retain_dim:
# out = F.interpolate(out, out_sz)
return out