-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
48 lines (37 loc) · 1.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import os
from environment.environment import Environment
import pandas as pd
from rl_algorithms.deep_q_learning import DeepQLearningAgent
import time
from power_algorithms.odss_network_management import ODSSNetworkManagement
from power_algorithms.odss_power_flow import ODSSPowerFlow
from power_algorithms.power_flow_tester import test_power_flow
def load_dataset():
script_dir = os.path.dirname(__file__)
file_path = os.path.join(script_dir, './dataset/data.csv')
df = pd.read_csv(file_path)
return df
def split_dataset(df, split_index):
df_train = df[df.index <= split_index]
df_test = df[df.index > split_index]
return df_train, df_test
def main():
#test_power_flow()
df = load_dataset()
df_train, df_test = split_dataset(df, 0)
#environment should'n have the entire dataset as an input parameter, but train and test methods
environment = Environment()
#environment.crtanje_loss_reward_vertical()
#environment.crtanje()
print('=====================agent=====================')
agent = DeepQLearningAgent(environment)
for i in range (1):
n_episodes = 60000
print('agent training started')
t1 = time.time()
agent.train(df_train, n_episodes, df_test)
t2 = time.time()
print ('agent training finished in', t2-t1)
agent.test(df_test, n_episodes, n_episodes)
if __name__ == '__main__':
main()