Skip to content

Commit 65cc883

Browse files
committed
Update for tracking the sun 2022
1 parent c05d3a9 commit 65cc883

File tree

1 file changed

+10
-93
lines changed

1 file changed

+10
-93
lines changed

TrackingtheSun.md

+10-93
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,7 @@ The trends described in this report derive primarily from project-level data rep
88

99
A technical summary of the dataset is as follows:
1010

11-
Focuses on projects installed through 2018 with preliminary data for the first half of 2019:
11+
Focuses on projects installed through 2018 with preliminary data for the first half of 2022:
1212
- Describes and analyzes trends related to Project characteristics, including system size and design, ownership, customer segmentation, and other attributes
1313
- National median installed prices, both long-term and recent trends, focusing on host-owned systems
1414
- Variability in pricing across projects according to system size, state, installer, module efficiency, inverter technology, residential new construction vs. retrofit, tax-exempt vs. commercial site hosts, and mounting configuration
@@ -51,7 +51,11 @@ Installed-Price Sample: (Used in analysis of installed prices)
5151

5252
The Tracking the Sun Dataset is made available in Parquet format on AWS and is partitioned by `state` in AWS Glue and Athena. The schema may change across dataset years on S3.
5353

54+
- `s3://oedi-data-lake/tracking-the-sun/2018/`
5455
- `s3://oedi-data-lake/tracking-the-sun/2019/`
56+
- `s3://oedi-data-lake/tracking-the-sun/2020/`
57+
- `s3://oedi-data-lake/tracking-the-sun/2021/`
58+
- `s3://oedi-data-lake/tracking-the-sun/2022/`
5559

5660
## python Connection examples
5761

@@ -71,98 +75,11 @@ df = pd.read_sql("SELECT * FROM oedi_tracking_the_sun_2019 limit 8;", conn)
7175
For jupyter notebook example see our notebook which includes partitions and data dictionary:
7276
[examples repository](https://github.com/openEDI/open-data-access-tools/tree/integration/examples)
7377

74-
## Data Dictionary for 2019 Dataset:
75-
76-
Available States
77-
1. AR
78-
2. AZ
79-
3. CA
80-
4. CO
81-
5. CT
82-
6. DC
83-
7. DE
84-
8. FL
85-
9. IL
86-
10. KS
87-
11. MA
88-
12. MD
89-
13. ME
90-
14. MN
91-
15. MO
92-
16. NH
93-
17. NJ
94-
18. NM
95-
19. NY
96-
20. OH
97-
21. OR
98-
22. PA
99-
23. RI
100-
24. TX
101-
25. UT
102-
26. VT
103-
27. WI
104-
28. WA
105-
106-
`data_provider` string\
107-
`system_id_from_first_data_provider` string\
108-
`system_id_from_second_data_provider_if_applicable` string\
109-
`system_id_tracking_the_sun` string\
110-
`installation_date` date\
111-
`system_size` double\
112-
`total_installed_price` double\
113-
`appraised_value_flag` boolean\
114-
`sales_tax_cost` double\
115-
`rebate_or_grant` double\
116-
`performance_based_incentive_annual_payment` double\
117-
`performance_based_incentives_duration` int\
118-
`feed_in_tariff_annual_payment` double\
119-
`feed_in_tariff_duration` int\
120-
`customer_segment` string\
121-
`new_construction` int\
122-
`tracking` int\
123-
`ground_mounted` int\
124-
`battery_system` int\
125-
`zip_code` string\
126-
`city` string\
127-
`utility_service_territory` string\
128-
`third_party_owned` int\
129-
`installer_name` string\
130-
`self_installed` int\
131-
`azimuth_1` double\
132-
`azimuth_2` double\
133-
`azimuth_3` double\
134-
`tilt_1` double\
135-
`tilt_2` double\
136-
`tilt_3` double\
137-
`module_manufacturer_1` string\
138-
`module_model_1` string\
139-
`module_manufacturer_2` string\
140-
`module_model_2` string\
141-
`module_manufacturer_3` string\
142-
`module_model_3` string\
143-
`additional_module_model` int\
144-
`module_technology_1` string\
145-
`module_technology_2` string\
146-
`module_technology_3` string\
147-
`bipv_module_1` int\
148-
`bipv_module_2` int\
149-
`bipv_module_3` int\
150-
`module_efficiency_1` double\
151-
`module_efficiency_2` double\
152-
`module_efficiency_3` double\
153-
`inverter_manufacturer_1` string\
154-
`inverter_manufacturer_2` string\
155-
`inverter_manufacturer_3` string\
156-
`inverter_model_1` string\
157-
`inverter_model_2` string\
158-
`inverter_model_3` string\
159-
`microinverter_1` int\
160-
`microinverter_2` int\
161-
`microinverter_3` int\
162-
`system_inverter_capacity` double\
163-
`dc_optimizer` int\
164-
`inverter_loading_ratio` double\
165-
`state` string\
78+
## Metadata Information
79+
80+
The dataset is partitioned by the US State.
81+
82+
Please refer to this repository for examples of metadata and data access - https://github.com/openEDI/open-data-access-tools/tree/master/examples
16683

16784
## References
16885

0 commit comments

Comments
 (0)