We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
https://blog.philip-huang.tech/?page=moe-routing-design
論文連結:Switch Transformers
MoE 的特色在於它會將輸入導向對應的”專家“,這項機制前提是路由如何被訓練出來的,從預訓練上想要事先為每一筆訓練資料標註對應的類別幾乎不太可能;如果說要讓路由自動從資料中學習,那要如何避免“贏者全拿”產生的不平衡性問題?
將 Transformer 中的 FFN 層替換為稀疏的 Switch FFN 層(淺藍色)。
由上圖 Switch Transformers 的架構可知, MoE 的路由分發是 token-level 而非 sentence-level 或 document-level;這可能會是一般常見的誤解。
理解稀疏路由 MoE Routing MoE 層將 token repres
The text was updated successfully, but these errors were encountered:
No branches or pull requests
https://blog.philip-huang.tech/?page=moe-routing-design
論文連結:Switch Transformers
MoE 的特色在於它會將輸入導向對應的”專家“,這項機制前提是路由如何被訓練出來的,從預訓練上想要事先為每一筆訓練資料標註對應的類別幾乎不太可能;如果說要讓路由自動從資料中學習,那要如何避免“贏者全拿”產生的不平衡性問題?
由上圖 Switch Transformers 的架構可知, MoE 的路由分發是 token-level 而非 sentence-level 或 document-level;這可能會是一般常見的誤解。
理解稀疏路由
MoE Routing
MoE 層將 token repres
The text was updated successfully, but these errors were encountered: