diff --git a/ci/deps/travis-36-doc.yaml b/ci/deps/travis-36-doc.yaml
index f79fcb11c179f..fb54c784d6fac 100644
--- a/ci/deps/travis-36-doc.yaml
+++ b/ci/deps/travis-36-doc.yaml
@@ -2,7 +2,6 @@ name: pandas
channels:
- defaults
- conda-forge
- - r
dependencies:
- beautifulsoup4
- bottleneck
@@ -31,14 +30,11 @@ dependencies:
- python-snappy
- python=3.6*
- pytz
- - r
- - rpy2
- scipy
- seaborn
- sphinx
- sqlalchemy
- statsmodels
- - tzlocal
- xarray
- xlrd
- xlsxwriter
diff --git a/doc/source/r_interface.rst b/doc/source/r_interface.rst
index 88634d7f75c63..d0b2601668069 100644
--- a/doc/source/r_interface.rst
+++ b/doc/source/r_interface.rst
@@ -33,10 +33,10 @@ See also the documentation of the `rpy2 `__ project:
In the remainder of this page, a few examples of explicit conversion is given. The pandas conversion of rpy2 needs first to be activated:
-.. ipython:: python
+.. code-block:: python
- from rpy2.robjects import r, pandas2ri
- pandas2ri.activate()
+ >>> from rpy2.robjects import pandas2ri # doctest: +SKIP
+ >>> pandas2ri.activate() # doctest: +SKIP
Transferring R data sets into Python
------------------------------------
@@ -44,10 +44,17 @@ Transferring R data sets into Python
Once the pandas conversion is activated (``pandas2ri.activate()``), many conversions
of R to pandas objects will be done automatically. For example, to obtain the 'iris' dataset as a pandas DataFrame:
-.. ipython:: python
+.. code-block:: python
- r.data('iris')
- r['iris'].head()
+ >>> from rpy2.robjects import r # doctest: +SKIP
+ >>> r.data('iris') # doctest: +SKIP
+ >>> r['iris'].head() # doctest: +SKIP
+ Sepal.Length Sepal.Width Petal.Length Petal.Width Species
+ 0 5.1 3.5 1.4 0.2 setosa
+ 1 4.9 3.0 1.4 0.2 setosa
+ 2 4.7 3.2 1.3 0.2 setosa
+ 3 4.6 3.1 1.5 0.2 setosa
+ 4 5.0 3.6 1.4 0.2 setosa
If the pandas conversion was not activated, the above could also be accomplished
by explicitly converting it with the ``pandas2ri.ri2py`` function
@@ -59,13 +66,19 @@ Converting DataFrames into R objects
The ``pandas2ri.py2ri`` function support the reverse operation to convert
DataFrames into the equivalent R object (that is, **data.frame**):
-.. ipython:: python
+.. code-block:: python
+
+ >>> df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]},
+ ... index=["one", "two", "three"]) # doctest: +SKIP
+ >>> r_dataframe = pandas2ri.py2ri(df) # doctest: +SKIP
+ >>> print(type(r_dataframe)) # doctest: +SKIP
+
+ >>> print(r_dataframe) # doctest: +SKIP
+ A B C
+ one 1 4 7
+ two 2 5 8
+ three 3 6 9
- df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6], 'C':[7,8,9]},
- index=["one", "two", "three"])
- r_dataframe = pandas2ri.py2ri(df)
- print(type(r_dataframe))
- print(r_dataframe)
The DataFrame's index is stored as the ``rownames`` attribute of the
data.frame instance.