-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
58 lines (48 loc) · 1.79 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# =============================================================================
# Import required libraries
# =============================================================================
import torch
from torch.utils.data import DataLoader
import torchvision.transforms as transforms
import numpy as np
'''
Sprite classes:
0: human
1: non-human
2: food
3: spell
4: side-facing
'''
# =============================================================================
# Sprite data
# =============================================================================
class SpriteDataset(torch.utils.data.Dataset):
def __init__(self, sfilename, lfilename, transform):
self.sprites = np.load(sfilename)
self.slabels = np.load(lfilename)
self.transform = transform
def __getitem__(self, idx):
image = self.sprites[idx]
if self.transform:
image = self.transform(image)
label = np.argmax(self.slabels[idx])
return image, label
def __len__(self):
return len(self.sprites)
# =============================================================================
# Make dataloader
# =============================================================================
def make_dataloader(args):
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
data = SpriteDataset(sfilename="./datasets/Sprites/sprites_1788_16x16.npy",
lfilename="./datasets/Sprites/sprite_labels_nc_1788_16x16.npy",
transform=transform)
#
dataloader = DataLoader(data,
batch_size=args.batch_size,
num_workers=args.num_workers,
shuffle=True)
return dataloader