-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathaug.py
75 lines (55 loc) · 2.46 KB
/
aug.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import cv2
from torchvision import transforms
from pytvision.transforms import transforms as mtrans
# transformations
#normalize = mtrans.ToMeanNormalization(
# #mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225],
# mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5],
# )
# cifar10
# normalize = mtrans.ToMeanNormalization(
# mean = (0.4914, 0.4822, 0.4465), #[x / 255 for x in [125.3, 123.0, 113.9]],
# std = (0.2023, 0.1994, 0.2010), #[x / 255 for x in [63.0, 62.1, 66.7]],
# )
# cifar100
#normalize = mtrans.ToMeanNormalization(
# mean = [x / 255 for x in [129.3, 124.1, 112.4]],
# std = [x / 255 for x in [68.2, 65.4, 70.4]],
# )
# svhn
#normalize = mtrans.ToMeanNormalization(
# mean = [x / 255 for x in [127.5, 127.5, 127.5]],
# std = [x / 255 for x in [127.5, 127.5, 127.5]],
# )
# normalize = mtrans.ToMeanNormalization(
# mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5],
# )
normalize = mtrans.ToNormalization()
def get_transforms_aug( size_input ):
return transforms.Compose([
#------------------------------------------------------------------
#Resize input
mtrans.ToResize( (48,48 ), resize_mode='square', padding_mode=cv2.BORDER_REFLECT),
#------------------------------------------------------------------
#Colors
#mtrans.ToRandomTransform( mtrans.RandomBrightness( factor=0.25 ), prob=0.50 ),
#mtrans.ToRandomTransform( mtrans.RandomContrast( factor=0.25 ), prob=0.50 ),
#mtrans.ToRandomTransform( mtrans.RandomGamma( factor=0.25 ), prob=0.50 ),
#mtrans.ToRandomTransform( mtrans.RandomRGBPermutation(), prob=0.50 ),
mtrans.ToRandomTransform( mtrans.CLAHE(), prob=0.25 ),
mtrans.ToRandomTransform( mtrans.ToGaussianBlur( sigma=0.005 ), prob=0.25 ),
#------------------------------------------------------------------
#Resize
mtrans.ToResize( (size_input,size_input), resize_mode='square', padding_mode=cv2.BORDER_REFLECT),
#------------------------------------------------------------------
mtrans.ToGrayscale(),
mtrans.ToTensor(),
normalize,
])
def get_transforms_det(size_input):
return transforms.Compose([
mtrans.ToResize( (size_input, size_input), resize_mode='squash', padding_mode=cv2.BORDER_REFLECT ) ,
mtrans.ToGrayscale(),
mtrans.ToTensor(),
normalize,
])