@@ -6,34 +6,40 @@ Each example was created as a _Jupyter notebook_ (http://jupyter.org/).
66These notebooks can be downloaded and used, or you can simply copy/paste the
77relevant code.
88
9+
910## Getting started
1011- [ Optimisation: First example] ( ./optimisation-first-example.ipynb )
1112- [ Sampling: First example] ( ./sampling-first-example.ipynb )
1213- [ Writing a model] ( ./writing-a-model.ipynb )
1314- [ Writing a custom LogPDF] ( ./writing-a-logpdf.ipynb )
1415- [ Writing a custom LogPrior] ( ./writing-a-prior.ipynb )
1516
17+
1618## Optimisation
1719
20+ - [ Optimising a loglikelihood] ( ./optimisation-on-a-loglikelihood.ipynb )
21+ - [ Spotting unidentifiable parameters] ( ./optimisation-spotting-unidentifiable-parameters.ipynb )
22+ - [ Transformed parameter space] ( ./optimisation-transformed-parameters.ipynb )
23+ - [ Ask-and-tell interface] ( ./optimisation-ask-and-tell.ipynb )
24+ - [ Convenience methods fmin() and curve\_ fit()] ( ./optimisation-convenience.ipynb )
25+
1826### Particle-based methods
1927- [ CMA-ES] ( ./optimisation-cmaes.ipynb )
2028- [ PSO] ( ./optimisation-pso.ipynb )
2129- [ SNES] ( ./optimisation-snes.ipynb )
2230- [ XNES] ( ./optimisation-xnes.ipynb )
2331
24- ### Further optimisation
25-
26- - [ Transformed parameter space] ( ./optimisation-transformed-parameters.ipynb )
27- - [ Ask-and-tell interface] ( ./optimisation-ask-and-tell.ipynb )
28- - [ Convenience methods fmin() and curve\_ fit()] ( ./optimisation-convenience.ipynb )
2932
3033## Sampling
3134
3235### MCMC without gradients
33- - [ Metropolis Random Walk MCMC] ( ./sampling-metropolis-mcmc.ipynb )
3436- [ Adaptive Covariance MCMC] ( ./sampling-adaptive-covariance-mcmc.ipynb )
35- - [ Population MCMC] ( ./sampling-population -mcmc.ipynb )
37+ - [ Metropolis Random Walk MCMC] ( ./sampling-metropolis -mcmc.ipynb )
3638- [ Differential Evolution MCMC] ( ./sampling-differential-evolution-mcmc.ipynb )
39+ - [ Dream MCMC] ( ./sampling-dream-mcmc.ipynb )
40+ - [ Emcee Hammer] ( ./sampling-emcee-hammer.ipynb )
41+ - [ Hamiltonian MCMC] ( ./sampling-hamiltonian-mcmc.ipynb )
42+ - [ Population MCMC] ( ./sampling-population-mcmc.ipynb )
3743
3844### Nested sampling
3945- [ Ellipsoidal nested rejection sampling] ( ./sampling-ellipsoidal-nested-rejection-sampling.ipynb )
@@ -48,8 +54,10 @@ relevant code.
4854### Further sampling
4955
5056- [ Effective sample size] ( ./sampling-effective-sample-size.ipynb )
57+ - [ Cauchy noise model] ( ./sampling-cauchy-sampling-error.ipynb )
5158- [ Student-t noise model] ( ./sampling-student-t-sampling-error.ipynb )
5259
60+
5361## Toy problems
5462
5563### Models
@@ -67,6 +75,8 @@ relevant code.
6775
6876### Distributions
6977
78+ - [ Annulus distribution] ( ./toy-distribution-annulus.ipynb )
79+ - [ Cone distribution] ( ./toy-distribution-cone.ipynb )
7080- [ Multimodal normal distribution] ( ./toy-distribution-multimodal-normal.ipynb )
7181- [ Rosenbrock function] ( ./toy-distribution-rosenbrock.ipynb )
7282- [ Simple Egg Box] ( ./toy-distribution-simple-egg-box.ipynb )
0 commit comments