1
+ {
2
+ "metadata" : {
3
+ "name" : " "
4
+ },
5
+ "nbformat" : 3 ,
6
+ "nbformat_minor" : 0 ,
7
+ "worksheets" : [
8
+ {
9
+ "cells" : [
10
+ {
11
+ "cell_type" : " code" ,
12
+ "collapsed" : false ,
13
+ "input" : [
14
+ " import plotly"
15
+ ],
16
+ "language" : " python" ,
17
+ "metadata" : {},
18
+ "outputs" : [],
19
+ "prompt_number" : 1
20
+ },
21
+ {
22
+ "cell_type" : " code" ,
23
+ "collapsed" : false ,
24
+ "input" : [
25
+ " reg = plotly.signup('pandas_and_plotly_demo', '[email protected] ')"
26
+ ],
27
+ "language" : " python" ,
28
+ "metadata" : {},
29
+ "outputs" : [
30
+ {
31
+ "output_type" : " stream" ,
32
+ "stream" : " stdout" ,
33
+ "text" : [
34
+ " Thanks for signing up to plotly!\n " ,
35
+ " \n " ,
36
+ " Your username is: pandas_and_plotly_demo\n " ,
37
+ " \n " ,
38
+ " Your temporary password is: 3eowi. You use this to log into your plotly account at https://plot.ly/plot.\n " ,
39
+ " \n " ,
40
+ " Your API key is: e39otewkg2. You use this to access your plotly account through the API.\n " ,
41
+ " \n " ,
42
+ " To get started, initialize a plotly object with your username and api_key, e.g. \n " ,
43
+ " >>> py = plotly.plotly('pandas_and_plotly_demo', 'e39otewkg2')\n " ,
44
+ " Then, make a graph!\n " ,
45
+ " >>> res = py.plot([1,2,3],[4,2,1])\n " ,
46
+ " \n " ,
47
+ " >>> print(res['url'])\n " ,
48
+ " \n "
49
+ ]
50
+ }
51
+ ],
52
+ "prompt_number" : 3
53
+ },
54
+ {
55
+ "cell_type" : " markdown" ,
56
+ "metadata" : {},
57
+ "source" : [
58
+ " This simple example shows how easy it is to generate plot data from Pandas' `groupby` method. Using the Titanic passenger dataset, we can easily generate a boxplot of age distribution by passenger class."
59
+ ]
60
+ },
61
+ {
62
+ "cell_type" : " code" ,
63
+ "collapsed" : false ,
64
+ "input" : [
65
+ " import pandas as pd\n " ,
66
+ " \n " ,
67
+ " titanic = pd.read_csv(\" http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic3.csv\" )"
68
+ ],
69
+ "language" : " python" ,
70
+ "metadata" : {},
71
+ "outputs" : [],
72
+ "prompt_number" : 4
73
+ },
74
+ {
75
+ "cell_type" : " code" ,
76
+ "collapsed" : false ,
77
+ "input" : [
78
+ " age_by_class = [{'y': data.values, \n " ,
79
+ " 'name': pclass,\n " ,
80
+ " 'type': 'box',\n " ,
81
+ " 'boxpoints': 'all', \n " ,
82
+ " 'jitter': 0.3} for pclass,data in list(titanic.groupby('pclass')['age'])]"
83
+ ],
84
+ "language" : " python" ,
85
+ "metadata" : {},
86
+ "outputs" : [],
87
+ "prompt_number" : 5
88
+ },
89
+ {
90
+ "cell_type" : " code" ,
91
+ "collapsed" : false ,
92
+ "input" : [
93
+ " ply = plotly.plotly(reg['un'], reg['api_key'])\n " ,
94
+ " ply.iplot(age_by_class)"
95
+ ],
96
+ "language" : " python" ,
97
+ "metadata" : {},
98
+ "outputs" : [
99
+ {
100
+ "output_type" : " stream" ,
101
+ "stream" : " stdout" ,
102
+ "text" : [
103
+ " \n " ,
104
+ " \n " ,
105
+ " \n "
106
+ ]
107
+ },
108
+ {
109
+ "html" : [
110
+ " <iframe height=\" 650\" id=\" igraph\" scrolling=\" no\" seamless=\" seamless\" src=\" https://plot.ly/~pandas_and_plotly_demo/1/600/600\" width=\" 650\" ></iframe>"
111
+ ],
112
+ "metadata" : {},
113
+ "output_type" : " pyout" ,
114
+ "prompt_number" : 9 ,
115
+ "text" : [
116
+ " <IPython.core.display.HTML at 0x10ed83f90>"
117
+ ]
118
+ }
119
+ ],
120
+ "prompt_number" : 9
121
+ }
122
+ ],
123
+ "metadata" : {}
124
+ }
125
+ ]
126
+ }
0 commit comments