-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinception_utils.py
54 lines (41 loc) · 1.88 KB
/
inception_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
from keras.applications.inception_v3 import InceptionV3
from keras import layers
from keras import models
from keras import optimizers
def get_model(weights,input_shape,num_labels):
# create the base pre-trained model
base_model = InceptionV3(weights=weights, include_top=False,input_shape=input_shape)
# add a global spatial average pooling layer
x = base_model.output
x = layers.GlobalAveragePooling2D()(x)
# let's add a fully-connected layer
x = layers.Dense(1024, activation='relu')(x)
# and a logistic layer
predictions = layers.Dense(num_labels, activation='softmax')(x)
# this is the model we will train
model = models.Model(inputs=base_model.input, outputs=predictions)
return model
def freeze_all_but_top(model):
"""Used to train just the top layers of the model."""
# first: train only the top layers (which were randomly initialized)
# i.e. freeze all convolutional InceptionV3 layers
for layer in model.layers[:-2]:
layer.trainable = False
# compile the model (should be done *after* setting layers to non-trainable)
model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])
return model
def freeze_all_but_mid_and_top(model,base_lr,momentum):
"""After we fine-tune the dense layers, train deeper."""
# we chose to train the top 2 inception blocks, i.e. we will freeze
# the first 172 layers and unfreeze the rest:
for layer in model.layers[:172]:
layer.trainable = False
for layer in model.layers[172:]:
layer.trainable = True
# we need to recompile the model for these modifications to take effect
# we use SGD with a low learning rate
model.compile(
optimizer=optimizers.SGD(lr=base_lr, momentum=momentum),
loss='categorical_crossentropy',
metrics=['accuracy', 'top_k_categorical_accuracy'])
return model