-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtime_series_server.py
79 lines (59 loc) · 2.09 KB
/
time_series_server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
from flask import Flask
from flask import request
import json
import pandas
import datetime
import numpy as np
from datasource import DataSourceManager
from flask_cors import CORS
class CustomEncoder(json.JSONEncoder):
def default(self, obj):
print('DEBUG-Encoder')
if isinstance(obj, pandas.Timestamp) or isinstance(obj, datetime) or isinstance(obj, np.datetime64):
return obj.isoformat()
else:
return json.JSONEncoder.default(self, obj)
datasource_manager = DataSourceManager()
app = Flask(__name__)
CORS(app)
app.json_encoder = CustomEncoder
def iso_to_date(iso_string):
return datetime.datetime.strptime(iso_string[:-6], '%Y-%m-%dT%H:%M:%S')
def build_data_frame(series_list, date_from, date_to):
merge = None
for s in series_list:
print(s)
if merge is None:
merge = datasource_manager.get_data_frame(s)
else:
merge = pandas.merge(merge, datasource_manager.get_data_frame(s), on='d')
merge.index = merge['d']
del merge['d']
merge.columns = series_list
if not (date_from is None) and not (date_to is None):
merge = merge[date_from:date_to]
if len(series_list) > 1:
merge = (merge-merge.min())/(merge.max()-merge.min())
print(merge)
return merge
def get_date_param(request, param):
param_value = request.args.get(param)
if not (param_value is None):
return iso_to_date(param_value)
return None
@app.route("/api/series/options", methods=['GET'])
def series_options():
return json.dumps(series)
@app.route("/api/series/data", methods=['GET'])
def series_data():
print(request.args.getlist("serie"))
series_list = request.args.getlist("serie")
data_frame = build_data_frame(series_list, get_date_param(request,"from"), get_date_param(request,"to"))
values = []
for s in series_list:
values.append({"data": data_frame[s].values.tolist(), "label": s})
response = {
"index": data_frame.index.values.tolist(),
"values": values
}
return json.dumps(response)