-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathPaintTheFence.java
89 lines (82 loc) · 2.71 KB
/
PaintTheFence.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
/*https://practice.geeksforgeeks.org/problems/painting-the-fence3727/1/*/
class Solution
{
public static final long m = 1000000007;
long countWays(int n,int k)
{ //base case
if (n == 1) return k;
long[] table = new long[n];
//first post can be coloured by k colours
table[0] = k;
//for second post we can have k*k combinations
table[1] = (long)Math.pow(k,2)%m;
/*
For all other posts, the logic goes as follows -
We can paint the current post (say i) in two ways,
either it can be same with i-1 post or different from i-1 post
So we can paint the i post with k-1 colours
to make it different from i-1 post
Hence the value becomes (number of combinations till i-1 post * k-1)
Then we can paint the i post with just 1 colour
to make it same as i-1 post
But we have several such combinations
i.e. the number of combinations done till i-2 post
After that we can paint both i-1 and i with the same colour
but that colour should be different from i-2 post
so again we have k-1 colour options
Hence the value becomes (number of combinations till i-2 post * k-1)
Both the values will be added
*/
for (int i = 2; i < n; ++i)
table[i] = ((table[i-1]*(k-1))%m+(table[i-2]*(k-1))%m)%m;
return table[n-1];
}
}
class Solution
{
long countWays(int n,int k)
{
//code here.
return solve(n,0,k,-1,-1);
}
private long solve(int n, int index, int k, int secondPrev, int prev)
{
if (index == n) return 1;
int result = 0, col, i;
for (col = 0; col < k; ++col) //for each color
{
if (col == prev && prev == secondPrev) continue;
result += solve(n, index+1, k, prev, col);
}
return result;
}
}
class Solution
{
Long[][][] storage;
long countWays(int n,int k)
{
//code here.
storage = new Long[n+1][k+1][k+1];
storage[0][0][0] = solve(n,0,k,0,0);
return storage[0][0][0];
}
private long solve(int n, int index, int k, int secondPrev, int prev)
{
if (index == n)
{
storage[index][prev][secondPrev] = (long)1;
return 1;
}
if (storage[index][prev][secondPrev] != null) return storage[index][prev][secondPrev];
long result = 0;
int col, i;
for (col = 1; col <= k; ++col) //for each color
{
if (col == prev && prev == secondPrev) continue;
result += solve(n, index+1, k, prev, col)%1000000007;
}
storage[index][prev][secondPrev] = result;
return result;
}
}