-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathSumOfFlooredPairs.java
94 lines (85 loc) · 2.42 KB
/
SumOfFlooredPairs.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
/*https://leetcode.com/problems/sum-of-floored-pairs/*/
//TLE
class Solution {
public int sumOfFlooredPairs(int[] nums) {
Arrays.sort(nums);
LinkedHashMap<Integer,Integer> map = new LinkedHashMap<Integer,Integer>();
int i, mult = 1, start, end;
for (i = 0; i < nums.length; ++i)
map.put(nums[i],(map.containsKey(nums[i]) ? (Integer)map.get(nums[i])+1 : 1));
int[][] pairs = new int[map.size()][2];
i = 0;
for (Map.Entry elem : map.entrySet())
{
pairs[i][0] = (Integer)elem.getKey();
pairs[i][1] = (Integer)elem.getValue();
map.put(pairs[i][0],i);
++i;
}
long result = 0, sum = 0;
int j, elem;
for (i = 0; i < pairs.length; ++i)
{
j = i;
elem = pairs[i][0];
mult = 0;
sum = 0;
while (j < pairs.length)
{
sum = 0;
++mult;
while (j < pairs.length && pairs[j][0] < elem*mult)
{
sum += pairs[j][1];
++j;
}
sum *= (mult-1)*(pairs[i][1]);
result = (result+sum%1000000007)%1000000007;
}
}
return (int)result;
}
}
//efficient solution
/*
example if we have 2,5,9 in input
our range will be till 9
0 1 2 3 4 5 6 7 8 9
2 1 1 1 1
5 1
9 1
-------------------------
0 0 1 2 3 4 5 6
once we have this acculmutaed array which gives us count of quotient till one number ,
now i loop over number and add the count on each number and return the sum
example in this example i will take ( 1 from 2 position, 3 from 5 position , 6 from 9th position ), return 10 as result
*/
class Solution {
public int sumOfFlooredPairs(int[] nums) {
long mod = 1000000007;
Arrays.sort(nums);
int max = nums[nums.length-1];
int[] counts = new int[max+1];
long[] quotients = new long[max+1];
for (int k : nums)
++counts[k];
int i, j;
for (i = 1; i < max+1; ++i)
{
if (counts[i] == 0)
continue;
j = i;
while (j <= max)
{
quotients[j] += counts[i];
j = j+i;
}
}
for (i = 1; i < max+1; ++i)
quotients[i] = (quotients[i]+quotients[i-1])%mod;
long sum = 0;
for (int k : nums)
sum = (sum+quotients[k])%mod;
return (int)sum;
}
}