-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathFindLowestCommonAncestor.java
148 lines (127 loc) · 3.82 KB
/
FindLowestCommonAncestor.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
/*https://practice.geeksforgeeks.org/problems/lowest-common-ancestor-in-a-bst/1*/
/*https://practice.geeksforgeeks.org/problems/lowest-common-ancestor-in-a-binary-tree/1*/
/*https://binarysearch.com/problems/Lowest-Common-Ancestor*/
//for BST, path modification approach
class BST
{
Node LCA(Node root, int n1, int n2)
{
//edge cases
if (root == null)
return null;
if (n1 == root.data || n2 == root.data)
return root;
//keep modifying the values on the path to n1, except n1 itself
Node temp = root;
while (temp != null && temp.data != n1)
{
if (n1 < temp.data)
{
temp.data += 1;
temp.data *= -1;
temp = temp.left;
}
else if (n1 > temp.data)
{
temp.data += 1;
temp.data *= -1;
temp = temp.right;
}
}
//again start from root
temp = root;
Node parent = root;
Node answer = temp;
//till we get modified values
while (temp.data < 0)
{
//restore the original value
temp.data += 1;
temp.data *= (-1);
//if it is equal to n1 or n2, return it
if (temp.data == n2 || temp.data == n1)
return temp;
//otherwise move
else
{
parent = temp;
temp = (temp.data < n2) ? temp.right : temp.left;
}
}
//if we again reached n1, it is the answer itself
if (temp.data == n1)
answer = temp;
//otherwise, the last modified node will be the answer
else if (temp.data != n1)
answer = parent;
return answer;
}
}
//for BST, another simple approach
class BST
{
Node LCA(Node root, int n1, int n2)
{
if (root == null)
return null;
// If both n1 and n2 are smaller than root, then LCA lies in left
if (root.data > n1 && root.data > n2)
return LCA(root.left, n1, n2);
// If both n1 and n2 are greater than root, then LCA lies in right
if (root.data < n1 && root.data < n2)
return LCA(root.right, n1, n2);
return root;
}
}
//for binary tree, tree traversal approach
class Solution
{
boolean n1Present = false, n2Present = false;
Node lca(Node root, int n1,int n2)
{
Node lca = findLCA(root,n1,n2);
if (n1Present && n2Present) return lca;
return null;
}
Node findLCA(Node root, int n1, int n2)
{
//base case
if (root == null)
return null;
Node temp=null;
//mark the presence of the given nodes
if (root.data == n1)
{
n1Present = true;
temp = root;
}
if (root.data == n2)
{
n2Present = true;
temp = root;
}
// Look for keys in left and right subtrees
Node left = findLCA(root.left, n1, n2);
Node right = findLCA(root.right, n1, n2);
if (temp != null)
return temp;
//if both are non null, root is the LCA
if (left != null && right != null)
return root;
// Otherwise check if left subtree or right subtree is LCA
return (left != null) ? left : right;
}
}
//binary tree
class Solution {
public int solve(Tree root, int a, int b) {
if (root == null) return -1;
if (root.val == a || root.val == b) return root.val;
int left = solve(root.left, a, b);
int right = solve(root.right, a, b);
if (left != -1 && right != -1) return root.val;
if (left != -1) return left;
if (right != -1) return right;
return -1;
}
}