-
Notifications
You must be signed in to change notification settings - Fork 796
/
Copy pathmessages.py
835 lines (638 loc) · 29.6 KB
/
messages.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
from __future__ import annotations as _annotations
import uuid
from collections.abc import Sequence
from dataclasses import dataclass, field, replace
from datetime import datetime
from mimetypes import guess_type
from typing import Annotated, Any, Literal, Union, cast, overload
import pydantic
import pydantic_core
from opentelemetry._events import Event # pyright: ignore[reportPrivateImportUsage]
from typing_extensions import TypeAlias
from ._utils import generate_tool_call_id as _generate_tool_call_id, now_utc as _now_utc
from .exceptions import UnexpectedModelBehavior
AudioMediaType: TypeAlias = Literal['audio/wav', 'audio/mpeg']
ImageMediaType: TypeAlias = Literal['image/jpeg', 'image/png', 'image/gif', 'image/webp']
DocumentMediaType: TypeAlias = Literal[
'application/pdf',
'text/plain',
'text/csv',
'application/vnd.openxmlformats-officedocument.wordprocessingml.document',
'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet',
'text/html',
'text/markdown',
'application/vnd.ms-excel',
]
VideoMediaType: TypeAlias = Literal[
'video/x-matroska',
'video/quicktime',
'video/mp4',
'video/webm',
'video/x-flv',
'video/mpeg',
'video/x-ms-wmv',
'video/3gpp',
]
AudioFormat: TypeAlias = Literal['wav', 'mp3']
ImageFormat: TypeAlias = Literal['jpeg', 'png', 'gif', 'webp']
DocumentFormat: TypeAlias = Literal['csv', 'doc', 'docx', 'html', 'md', 'pdf', 'txt', 'xls', 'xlsx']
VideoFormat: TypeAlias = Literal['mkv', 'mov', 'mp4', 'webm', 'flv', 'mpeg', 'mpg', 'wmv', 'three_gp']
@dataclass
class SystemPromptPart:
"""A system prompt, generally written by the application developer.
This gives the model context and guidance on how to respond.
"""
content: str
"""The content of the prompt."""
timestamp: datetime = field(default_factory=_now_utc)
"""The timestamp of the prompt."""
dynamic_ref: str | None = None
"""The ref of the dynamic system prompt function that generated this part.
Only set if system prompt is dynamic, see [`system_prompt`][pydantic_ai.Agent.system_prompt] for more information.
"""
part_kind: Literal['system-prompt'] = 'system-prompt'
"""Part type identifier, this is available on all parts as a discriminator."""
def otel_event(self) -> Event:
return Event('gen_ai.system.message', body={'content': self.content, 'role': 'system'})
@dataclass
class VideoUrl:
"""A URL to an video."""
url: str
"""The URL of the video."""
kind: Literal['video-url'] = 'video-url'
"""Type identifier, this is available on all parts as a discriminator."""
@property
def media_type(self) -> VideoMediaType: # pragma: no cover
"""Return the media type of the video, based on the url."""
if self.url.endswith('.mkv'):
return 'video/x-matroska'
elif self.url.endswith('.mov'):
return 'video/quicktime'
elif self.url.endswith('.mp4'):
return 'video/mp4'
elif self.url.endswith('.webm'):
return 'video/webm'
elif self.url.endswith('.flv'):
return 'video/x-flv'
elif self.url.endswith(('.mpeg', '.mpg')):
return 'video/mpeg'
elif self.url.endswith('.wmv'):
return 'video/x-ms-wmv'
elif self.url.endswith('.three_gp'):
return 'video/3gpp'
else:
raise ValueError(f'Unknown video file extension: {self.url}')
@property
def format(self) -> VideoFormat:
"""The file format of the video.
The choice of supported formats were based on the Bedrock Converse API. Other APIs don't require to use a format.
"""
return _video_format(self.media_type)
@dataclass
class AudioUrl:
"""A URL to an audio file."""
url: str
"""The URL of the audio file."""
kind: Literal['audio-url'] = 'audio-url'
"""Type identifier, this is available on all parts as a discriminator."""
@property
def media_type(self) -> AudioMediaType:
"""Return the media type of the audio file, based on the url."""
if self.url.endswith('.mp3'):
return 'audio/mpeg'
elif self.url.endswith('.wav'):
return 'audio/wav'
else:
raise ValueError(f'Unknown audio file extension: {self.url}')
@dataclass
class ImageUrl:
"""A URL to an image."""
url: str
"""The URL of the image."""
kind: Literal['image-url'] = 'image-url'
"""Type identifier, this is available on all parts as a discriminator."""
@property
def media_type(self) -> ImageMediaType:
"""Return the media type of the image, based on the url."""
if self.url.endswith(('.jpg', '.jpeg')):
return 'image/jpeg'
elif self.url.endswith('.png'):
return 'image/png'
elif self.url.endswith('.gif'):
return 'image/gif'
elif self.url.endswith('.webp'):
return 'image/webp'
else:
raise ValueError(f'Unknown image file extension: {self.url}')
@property
def format(self) -> ImageFormat:
"""The file format of the image.
The choice of supported formats were based on the Bedrock Converse API. Other APIs don't require to use a format.
"""
return _image_format(self.media_type)
@dataclass
class DocumentUrl:
"""The URL of the document."""
url: str
"""The URL of the document."""
kind: Literal['document-url'] = 'document-url'
"""Type identifier, this is available on all parts as a discriminator."""
@property
def media_type(self) -> str:
"""Return the media type of the document, based on the url."""
type_, _ = guess_type(self.url)
if type_ is None:
raise RuntimeError(f'Unknown document file extension: {self.url}')
return type_
@property
def format(self) -> DocumentFormat:
"""The file format of the document.
The choice of supported formats were based on the Bedrock Converse API. Other APIs don't require to use a format.
"""
return _document_format(self.media_type)
@dataclass
class BinaryContent:
"""Binary content, e.g. an audio or image file."""
data: bytes
"""The binary data."""
media_type: AudioMediaType | ImageMediaType | DocumentMediaType | str
"""The media type of the binary data."""
kind: Literal['binary'] = 'binary'
"""Type identifier, this is available on all parts as a discriminator."""
@property
def is_audio(self) -> bool:
"""Return `True` if the media type is an audio type."""
return self.media_type.startswith('audio/')
@property
def is_image(self) -> bool:
"""Return `True` if the media type is an image type."""
return self.media_type.startswith('image/')
@property
def is_video(self) -> bool:
"""Return `True` if the media type is a video type."""
return self.media_type.startswith('video/')
@property
def is_document(self) -> bool:
"""Return `True` if the media type is a document type."""
return self.media_type in {
'application/pdf',
'text/plain',
'text/csv',
'application/vnd.openxmlformats-officedocument.wordprocessingml.document',
'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet',
'text/html',
'text/markdown',
'application/vnd.ms-excel',
}
@property
def format(self) -> str:
"""The file format of the binary content."""
if self.is_audio:
if self.media_type == 'audio/mpeg':
return 'mp3'
elif self.media_type == 'audio/wav':
return 'wav'
elif self.is_image:
return _image_format(self.media_type)
elif self.is_document:
return _document_format(self.media_type)
elif self.is_video:
return _video_format(self.media_type)
raise ValueError(f'Unknown media type: {self.media_type}')
UserContent: TypeAlias = 'str | ImageUrl | AudioUrl | DocumentUrl | VideoUrl | BinaryContent'
# Ideally this would be a Union of types, but Python 3.9 requires it to be a string, and strings don't work with `isinstance``.
MultiModalContentTypes = (ImageUrl, AudioUrl, DocumentUrl, VideoUrl, BinaryContent)
def _document_format(media_type: str) -> DocumentFormat:
if media_type == 'application/pdf':
return 'pdf'
elif media_type == 'text/plain':
return 'txt'
elif media_type == 'text/csv':
return 'csv'
elif media_type == 'application/vnd.openxmlformats-officedocument.wordprocessingml.document':
return 'docx'
elif media_type == 'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet':
return 'xlsx'
elif media_type == 'text/html':
return 'html'
elif media_type == 'text/markdown':
return 'md'
elif media_type == 'application/vnd.ms-excel':
return 'xls'
else:
raise ValueError(f'Unknown document media type: {media_type}')
def _image_format(media_type: str) -> ImageFormat:
if media_type == 'image/jpeg':
return 'jpeg'
elif media_type == 'image/png':
return 'png'
elif media_type == 'image/gif':
return 'gif'
elif media_type == 'image/webp':
return 'webp'
else:
raise ValueError(f'Unknown image media type: {media_type}')
def _video_format(media_type: str) -> VideoFormat:
if media_type == 'video/x-matroska':
return 'mkv'
elif media_type == 'video/quicktime':
return 'mov'
elif media_type == 'video/mp4':
return 'mp4'
elif media_type == 'video/webm':
return 'webm'
elif media_type == 'video/x-flv':
return 'flv'
elif media_type == 'video/mpeg':
return 'mpeg'
elif media_type == 'video/x-ms-wmv':
return 'wmv'
elif media_type == 'video/3gpp':
return 'three_gp'
else: # pragma: no cover
raise ValueError(f'Unknown video media type: {media_type}')
@dataclass
class UserPromptPart:
"""A user prompt, generally written by the end user.
Content comes from the `user_prompt` parameter of [`Agent.run`][pydantic_ai.Agent.run],
[`Agent.run_sync`][pydantic_ai.Agent.run_sync], and [`Agent.run_stream`][pydantic_ai.Agent.run_stream].
"""
content: str | Sequence[UserContent]
"""The content of the prompt."""
timestamp: datetime = field(default_factory=_now_utc)
"""The timestamp of the prompt."""
part_kind: Literal['user-prompt'] = 'user-prompt'
"""Part type identifier, this is available on all parts as a discriminator."""
def otel_event(self) -> Event:
content: str | list[dict[str, Any] | str]
if isinstance(self.content, str):
content = self.content
else:
content = []
for part in self.content:
if isinstance(part, str):
content.append(part)
elif isinstance(part, (ImageUrl, AudioUrl, DocumentUrl, VideoUrl)):
content.append({'kind': part.kind, 'url': part.url})
else:
content.append({'kind': part.kind})
return Event('gen_ai.user.message', body={'content': content, 'role': 'user'})
tool_return_ta: pydantic.TypeAdapter[Any] = pydantic.TypeAdapter(Any, config=pydantic.ConfigDict(defer_build=True))
@dataclass
class ToolReturnPart:
"""A tool return message, this encodes the result of running a tool."""
tool_name: str
"""The name of the "tool" was called."""
content: Any
"""The return value."""
tool_call_id: str
"""The tool call identifier, this is used by some models including OpenAI."""
timestamp: datetime = field(default_factory=_now_utc)
"""The timestamp, when the tool returned."""
part_kind: Literal['tool-return'] = 'tool-return'
"""Part type identifier, this is available on all parts as a discriminator."""
def model_response_str(self) -> str:
"""Return a string representation of the content for the model."""
if isinstance(self.content, str):
return self.content
else:
return tool_return_ta.dump_json(self.content).decode()
def model_response_object(self) -> dict[str, Any]:
"""Return a dictionary representation of the content, wrapping non-dict types appropriately."""
# gemini supports JSON dict return values, but no other JSON types, hence we wrap anything else in a dict
if isinstance(self.content, dict):
return tool_return_ta.dump_python(self.content, mode='json') # pyright: ignore[reportUnknownMemberType]
else:
return {'return_value': tool_return_ta.dump_python(self.content, mode='json')}
def otel_event(self) -> Event:
return Event(
'gen_ai.tool.message',
body={'content': self.content, 'role': 'tool', 'id': self.tool_call_id, 'name': self.tool_name},
)
error_details_ta = pydantic.TypeAdapter(list[pydantic_core.ErrorDetails], config=pydantic.ConfigDict(defer_build=True))
@dataclass
class RetryPromptPart:
"""A message back to a model asking it to try again.
This can be sent for a number of reasons:
* Pydantic validation of tool arguments failed, here content is derived from a Pydantic
[`ValidationError`][pydantic_core.ValidationError]
* a tool raised a [`ModelRetry`][pydantic_ai.exceptions.ModelRetry] exception
* no tool was found for the tool name
* the model returned plain text when a structured response was expected
* Pydantic validation of a structured response failed, here content is derived from a Pydantic
[`ValidationError`][pydantic_core.ValidationError]
* an output validator raised a [`ModelRetry`][pydantic_ai.exceptions.ModelRetry] exception
"""
content: list[pydantic_core.ErrorDetails] | str
"""Details of why and how the model should retry.
If the retry was triggered by a [`ValidationError`][pydantic_core.ValidationError], this will be a list of
error details.
"""
tool_name: str | None = None
"""The name of the tool that was called, if any."""
tool_call_id: str = field(default_factory=_generate_tool_call_id)
"""The tool call identifier, this is used by some models including OpenAI.
In case the tool call id is not provided by the model, PydanticAI will generate a random one.
"""
timestamp: datetime = field(default_factory=_now_utc)
"""The timestamp, when the retry was triggered."""
part_kind: Literal['retry-prompt'] = 'retry-prompt'
"""Part type identifier, this is available on all parts as a discriminator."""
def model_response(self) -> str:
"""Return a string message describing why the retry is requested."""
if isinstance(self.content, str):
description = self.content
else:
json_errors = error_details_ta.dump_json(self.content, exclude={'__all__': {'ctx'}}, indent=2)
description = f'{len(self.content)} validation errors: {json_errors.decode()}'
return f'{description}\n\nFix the errors and try again.'
def otel_event(self) -> Event:
if self.tool_name is None:
return Event('gen_ai.user.message', body={'content': self.model_response(), 'role': 'user'})
else:
return Event(
'gen_ai.tool.message',
body={
'content': self.model_response(),
'role': 'tool',
'id': self.tool_call_id,
'name': self.tool_name,
},
)
ModelRequestPart = Annotated[
Union[SystemPromptPart, UserPromptPart, ToolReturnPart, RetryPromptPart], pydantic.Discriminator('part_kind')
]
"""A message part sent by PydanticAI to a model."""
@dataclass
class ModelRequest:
"""A request generated by PydanticAI and sent to a model, e.g. a message from the PydanticAI app to the model."""
parts: list[ModelRequestPart]
"""The parts of the user message."""
instructions: str | None = None
"""The instructions for the model."""
kind: Literal['request'] = 'request'
"""Message type identifier, this is available on all parts as a discriminator."""
@dataclass
class TextPart:
"""A plain text response from a model."""
content: str
"""The text content of the response."""
part_kind: Literal['text'] = 'text'
"""Part type identifier, this is available on all parts as a discriminator."""
def has_content(self) -> bool:
"""Return `True` if the text content is non-empty."""
return bool(self.content)
@dataclass
class ToolCallPart:
"""A tool call from a model."""
tool_name: str
"""The name of the tool to call."""
args: str | dict[str, Any]
"""The arguments to pass to the tool.
This is stored either as a JSON string or a Python dictionary depending on how data was received.
"""
tool_call_id: str = field(default_factory=_generate_tool_call_id)
"""The tool call identifier, this is used by some models including OpenAI.
In case the tool call id is not provided by the model, PydanticAI will generate a random one.
"""
part_kind: Literal['tool-call'] = 'tool-call'
"""Part type identifier, this is available on all parts as a discriminator."""
def args_as_dict(self) -> dict[str, Any]:
"""Return the arguments as a Python dictionary.
This is just for convenience with models that require dicts as input.
"""
if isinstance(self.args, dict):
return self.args
if isinstance(self.args, str) and not self.args:
return {}
args = pydantic_core.from_json(self.args)
assert isinstance(args, dict), 'args should be a dict'
return cast(dict[str, Any], args)
def args_as_json_str(self) -> str:
"""Return the arguments as a JSON string.
This is just for convenience with models that require JSON strings as input.
"""
if isinstance(self.args, str):
return self.args
return pydantic_core.to_json(self.args).decode()
def has_content(self) -> bool:
"""Return `True` if the arguments contain any data."""
if isinstance(self.args, dict):
# TODO: This should probably return True if you have the value False, or 0, etc.
# It makes sense to me to ignore empty strings, but not sure about empty lists or dicts
return any(self.args.values())
else:
return bool(self.args)
ModelResponsePart = Annotated[Union[TextPart, ToolCallPart], pydantic.Discriminator('part_kind')]
"""A message part returned by a model."""
@dataclass
class ModelResponse:
"""A response from a model, e.g. a message from the model to the PydanticAI app."""
parts: list[ModelResponsePart]
"""The parts of the model message."""
model_name: str | None = None
"""The name of the model that generated the response."""
timestamp: datetime = field(default_factory=_now_utc)
"""The timestamp of the response.
If the model provides a timestamp in the response (as OpenAI does) that will be used.
"""
kind: Literal['response'] = 'response'
"""Message type identifier, this is available on all parts as a discriminator."""
def otel_events(self) -> list[Event]:
"""Return OpenTelemetry events for the response."""
result: list[Event] = []
def new_event_body():
new_body: dict[str, Any] = {'role': 'assistant'}
ev = Event('gen_ai.assistant.message', body=new_body)
result.append(ev)
return new_body
body = new_event_body()
for part in self.parts:
if isinstance(part, ToolCallPart):
body.setdefault('tool_calls', []).append(
{
'id': part.tool_call_id,
'type': 'function', # TODO https://github.com/pydantic/pydantic-ai/issues/888
'function': {
'name': part.tool_name,
'arguments': part.args,
},
}
)
elif isinstance(part, TextPart):
if body.get('content'):
body = new_event_body()
body['content'] = part.content
return result
ModelMessage = Annotated[Union[ModelRequest, ModelResponse], pydantic.Discriminator('kind')]
"""Any message sent to or returned by a model."""
ModelMessagesTypeAdapter = pydantic.TypeAdapter(
list[ModelMessage], config=pydantic.ConfigDict(defer_build=True, ser_json_bytes='base64', val_json_bytes='base64')
)
"""Pydantic [`TypeAdapter`][pydantic.type_adapter.TypeAdapter] for (de)serializing messages."""
@dataclass
class TextPartDelta:
"""A partial update (delta) for a `TextPart` to append new text content."""
content_delta: str
"""The incremental text content to add to the existing `TextPart` content."""
part_delta_kind: Literal['text'] = 'text'
"""Part delta type identifier, used as a discriminator."""
def apply(self, part: ModelResponsePart) -> TextPart:
"""Apply this text delta to an existing `TextPart`.
Args:
part: The existing model response part, which must be a `TextPart`.
Returns:
A new `TextPart` with updated text content.
Raises:
ValueError: If `part` is not a `TextPart`.
"""
if not isinstance(part, TextPart):
raise ValueError('Cannot apply TextPartDeltas to non-TextParts')
return replace(part, content=part.content + self.content_delta)
@dataclass
class ToolCallPartDelta:
"""A partial update (delta) for a `ToolCallPart` to modify tool name, arguments, or tool call ID."""
tool_name_delta: str | None = None
"""Incremental text to add to the existing tool name, if any."""
args_delta: str | dict[str, Any] | None = None
"""Incremental data to add to the tool arguments.
If this is a string, it will be appended to existing JSON arguments.
If this is a dict, it will be merged with existing dict arguments.
"""
tool_call_id: str | None = None
"""Optional tool call identifier, this is used by some models including OpenAI.
Note this is never treated as a delta — it can replace None, but otherwise if a
non-matching value is provided an error will be raised."""
part_delta_kind: Literal['tool_call'] = 'tool_call'
"""Part delta type identifier, used as a discriminator."""
def as_part(self) -> ToolCallPart | None:
"""Convert this delta to a fully formed `ToolCallPart` if possible, otherwise return `None`.
Returns:
A `ToolCallPart` if both `tool_name_delta` and `args_delta` are set, otherwise `None`.
"""
if self.tool_name_delta is None or self.args_delta is None:
return None
return ToolCallPart(self.tool_name_delta, self.args_delta, self.tool_call_id or _generate_tool_call_id())
@overload
def apply(self, part: ModelResponsePart) -> ToolCallPart: ...
@overload
def apply(self, part: ModelResponsePart | ToolCallPartDelta) -> ToolCallPart | ToolCallPartDelta: ...
def apply(self, part: ModelResponsePart | ToolCallPartDelta) -> ToolCallPart | ToolCallPartDelta:
"""Apply this delta to a part or delta, returning a new part or delta with the changes applied.
Args:
part: The existing model response part or delta to update.
Returns:
Either a new `ToolCallPart` or an updated `ToolCallPartDelta`.
Raises:
ValueError: If `part` is neither a `ToolCallPart` nor a `ToolCallPartDelta`.
UnexpectedModelBehavior: If applying JSON deltas to dict arguments or vice versa.
"""
if isinstance(part, ToolCallPart):
return self._apply_to_part(part)
if isinstance(part, ToolCallPartDelta):
return self._apply_to_delta(part)
raise ValueError(f'Can only apply ToolCallPartDeltas to ToolCallParts or ToolCallPartDeltas, not {part}')
def _apply_to_delta(self, delta: ToolCallPartDelta) -> ToolCallPart | ToolCallPartDelta:
"""Internal helper to apply this delta to another delta."""
if self.tool_name_delta:
# Append incremental text to the existing tool_name_delta
updated_tool_name_delta = (delta.tool_name_delta or '') + self.tool_name_delta
delta = replace(delta, tool_name_delta=updated_tool_name_delta)
if isinstance(self.args_delta, str):
if isinstance(delta.args_delta, dict):
raise UnexpectedModelBehavior(
f'Cannot apply JSON deltas to non-JSON tool arguments ({delta=}, {self=})'
)
updated_args_delta = (delta.args_delta or '') + self.args_delta
delta = replace(delta, args_delta=updated_args_delta)
elif isinstance(self.args_delta, dict):
if isinstance(delta.args_delta, str):
raise UnexpectedModelBehavior(
f'Cannot apply dict deltas to non-dict tool arguments ({delta=}, {self=})'
)
updated_args_delta = {**(delta.args_delta or {}), **self.args_delta}
delta = replace(delta, args_delta=updated_args_delta)
if self.tool_call_id:
delta = replace(delta, tool_call_id=self.tool_call_id)
# If we now have enough data to create a full ToolCallPart, do so
if delta.tool_name_delta is not None and delta.args_delta is not None:
return ToolCallPart(delta.tool_name_delta, delta.args_delta, delta.tool_call_id or _generate_tool_call_id())
return delta
def _apply_to_part(self, part: ToolCallPart) -> ToolCallPart:
"""Internal helper to apply this delta directly to a `ToolCallPart`."""
if self.tool_name_delta:
# Append incremental text to the existing tool_name
tool_name = part.tool_name + self.tool_name_delta
part = replace(part, tool_name=tool_name)
if isinstance(self.args_delta, str):
if not isinstance(part.args, str):
raise UnexpectedModelBehavior(f'Cannot apply JSON deltas to non-JSON tool arguments ({part=}, {self=})')
updated_json = part.args + self.args_delta
part = replace(part, args=updated_json)
elif isinstance(self.args_delta, dict):
if not isinstance(part.args, dict):
raise UnexpectedModelBehavior(f'Cannot apply dict deltas to non-dict tool arguments ({part=}, {self=})')
updated_dict = {**(part.args or {}), **self.args_delta}
part = replace(part, args=updated_dict)
if self.tool_call_id:
part = replace(part, tool_call_id=self.tool_call_id)
return part
ModelResponsePartDelta = Annotated[Union[TextPartDelta, ToolCallPartDelta], pydantic.Discriminator('part_delta_kind')]
"""A partial update (delta) for any model response part."""
@dataclass
class PartStartEvent:
"""An event indicating that a new part has started.
If multiple `PartStartEvent`s are received with the same index,
the new one should fully replace the old one.
"""
index: int
"""The index of the part within the overall response parts list."""
part: ModelResponsePart
"""The newly started `ModelResponsePart`."""
event_kind: Literal['part_start'] = 'part_start'
"""Event type identifier, used as a discriminator."""
@dataclass
class PartDeltaEvent:
"""An event indicating a delta update for an existing part."""
index: int
"""The index of the part within the overall response parts list."""
delta: ModelResponsePartDelta
"""The delta to apply to the specified part."""
event_kind: Literal['part_delta'] = 'part_delta'
"""Event type identifier, used as a discriminator."""
@dataclass
class FinalResultEvent:
"""An event indicating the response to the current model request matches the output schema and will produce a result."""
tool_name: str | None
"""The name of the output tool that was called. `None` if the result is from text content and not from a tool."""
tool_call_id: str | None
"""The tool call ID, if any, that this result is associated with."""
event_kind: Literal['final_result'] = 'final_result'
"""Event type identifier, used as a discriminator."""
ModelResponseStreamEvent = Annotated[Union[PartStartEvent, PartDeltaEvent], pydantic.Discriminator('event_kind')]
"""An event in the model response stream, either starting a new part or applying a delta to an existing one."""
AgentStreamEvent = Annotated[
Union[PartStartEvent, PartDeltaEvent, FinalResultEvent], pydantic.Discriminator('event_kind')
]
"""An event in the agent stream."""
@dataclass
class FunctionToolCallEvent:
"""An event indicating the start to a call to a function tool."""
part: ToolCallPart
"""The (function) tool call to make."""
call_id: str = field(init=False)
"""An ID used for matching details about the call to its result. If present, defaults to the part's tool_call_id."""
event_kind: Literal['function_tool_call'] = 'function_tool_call'
"""Event type identifier, used as a discriminator."""
def __post_init__(self):
self.call_id = self.part.tool_call_id or str(uuid.uuid4())
@dataclass
class FunctionToolResultEvent:
"""An event indicating the result of a function tool call."""
result: ToolReturnPart | RetryPromptPart
"""The result of the call to the function tool."""
tool_call_id: str
"""An ID used to match the result to its original call."""
event_kind: Literal['function_tool_result'] = 'function_tool_result'
"""Event type identifier, used as a discriminator."""
HandleResponseEvent = Annotated[Union[FunctionToolCallEvent, FunctionToolResultEvent], pydantic.Discriminator('kind')]