-
Notifications
You must be signed in to change notification settings - Fork 794
/
Copy pathmistral.py
686 lines (591 loc) · 28.3 KB
/
mistral.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
from __future__ import annotations as _annotations
import base64
from collections.abc import AsyncIterable, AsyncIterator, Iterable
from contextlib import asynccontextmanager
from dataclasses import dataclass, field
from datetime import datetime, timezone
from typing import Any, Literal, Union, cast
import pydantic_core
from httpx import Timeout
from typing_extensions import assert_never
from .. import ModelHTTPError, UnexpectedModelBehavior, _utils
from .._utils import generate_tool_call_id as _generate_tool_call_id, now_utc as _now_utc
from ..messages import (
BinaryContent,
DocumentUrl,
ImageUrl,
ModelMessage,
ModelRequest,
ModelResponse,
ModelResponsePart,
ModelResponseStreamEvent,
RetryPromptPart,
SystemPromptPart,
TextPart,
ToolCallPart,
ToolReturnPart,
UserPromptPart,
VideoUrl,
)
from ..providers import Provider, infer_provider
from ..settings import ModelSettings
from ..tools import ToolDefinition
from ..usage import Usage
from . import (
Model,
ModelRequestParameters,
StreamedResponse,
check_allow_model_requests,
get_user_agent,
)
try:
from mistralai import (
UNSET,
CompletionChunk as MistralCompletionChunk,
Content as MistralContent,
ContentChunk as MistralContentChunk,
FunctionCall as MistralFunctionCall,
ImageURL as MistralImageURL,
ImageURLChunk as MistralImageURLChunk,
Mistral,
OptionalNullable as MistralOptionalNullable,
TextChunk as MistralTextChunk,
ToolChoiceEnum as MistralToolChoiceEnum,
)
from mistralai.models import (
ChatCompletionResponse as MistralChatCompletionResponse,
CompletionEvent as MistralCompletionEvent,
Messages as MistralMessages,
SDKError,
Tool as MistralTool,
ToolCall as MistralToolCall,
)
from mistralai.models.assistantmessage import AssistantMessage as MistralAssistantMessage
from mistralai.models.function import Function as MistralFunction
from mistralai.models.systemmessage import SystemMessage as MistralSystemMessage
from mistralai.models.toolmessage import ToolMessage as MistralToolMessage
from mistralai.models.usermessage import UserMessage as MistralUserMessage
from mistralai.types.basemodel import Unset as MistralUnset
from mistralai.utils.eventstreaming import EventStreamAsync as MistralEventStreamAsync
except ImportError as e:
raise ImportError(
'Please install `mistral` to use the Mistral model, '
'you can use the `mistral` optional group — `pip install "pydantic-ai-slim[mistral]"`'
) from e
LatestMistralModelNames = Literal[
'mistral-large-latest', 'mistral-small-latest', 'codestral-latest', 'mistral-moderation-latest'
]
"""Latest Mistral models."""
MistralModelName = Union[str, LatestMistralModelNames]
"""Possible Mistral model names.
Since Mistral supports a variety of date-stamped models, we explicitly list the most popular models but
allow any name in the type hints.
Since [the Mistral docs](https://docs.mistral.ai/getting-started/models/models_overview/) for a full list.
"""
class MistralModelSettings(ModelSettings):
"""Settings used for a Mistral model request.
ALL FIELDS MUST BE `mistral_` PREFIXED SO YOU CAN MERGE THEM WITH OTHER MODELS.
"""
# This class is a placeholder for any future mistral-specific settings
@dataclass(init=False)
class MistralModel(Model):
"""A model that uses Mistral.
Internally, this uses the [Mistral Python client](https://github.com/mistralai/client-python) to interact with the API.
[API Documentation](https://docs.mistral.ai/)
"""
client: Mistral = field(repr=False)
json_mode_schema_prompt: str = """Answer in JSON Object, respect the format:\n```\n{schema}\n```\n"""
_model_name: MistralModelName = field(repr=False)
_system: str = field(default='mistral_ai', repr=False)
def __init__(
self,
model_name: MistralModelName,
*,
provider: Literal['mistral'] | Provider[Mistral] = 'mistral',
json_mode_schema_prompt: str = """Answer in JSON Object, respect the format:\n```\n{schema}\n```\n""",
):
"""Initialize a Mistral model.
Args:
model_name: The name of the model to use.
provider: The provider to use for authentication and API access. Can be either the string
'mistral' or an instance of `Provider[Mistral]`. If not provided, a new provider will be
created using the other parameters.
json_mode_schema_prompt: The prompt to show when the model expects a JSON object as input.
"""
self._model_name = model_name
self.json_mode_schema_prompt = json_mode_schema_prompt
if isinstance(provider, str):
provider = infer_provider(provider)
self.client = provider.client
@property
def base_url(self) -> str:
return self.client.sdk_configuration.get_server_details()[0]
async def request(
self,
messages: list[ModelMessage],
model_settings: ModelSettings | None,
model_request_parameters: ModelRequestParameters,
) -> tuple[ModelResponse, Usage]:
"""Make a non-streaming request to the model from Pydantic AI call."""
check_allow_model_requests()
response = await self._completions_create(
messages, cast(MistralModelSettings, model_settings or {}), model_request_parameters
)
return self._process_response(response), _map_usage(response)
@asynccontextmanager
async def request_stream(
self,
messages: list[ModelMessage],
model_settings: ModelSettings | None,
model_request_parameters: ModelRequestParameters,
) -> AsyncIterator[StreamedResponse]:
"""Make a streaming request to the model from Pydantic AI call."""
check_allow_model_requests()
response = await self._stream_completions_create(
messages, cast(MistralModelSettings, model_settings or {}), model_request_parameters
)
async with response:
yield await self._process_streamed_response(model_request_parameters.output_tools, response)
@property
def model_name(self) -> MistralModelName:
"""The model name."""
return self._model_name
@property
def system(self) -> str:
"""The system / model provider."""
return self._system
async def _completions_create(
self,
messages: list[ModelMessage],
model_settings: MistralModelSettings,
model_request_parameters: ModelRequestParameters,
) -> MistralChatCompletionResponse:
"""Make a non-streaming request to the model."""
try:
response = await self.client.chat.complete_async(
model=str(self._model_name),
messages=self._map_messages(messages),
n=1,
tools=self._map_function_and_output_tools_definition(model_request_parameters) or UNSET,
tool_choice=self._get_tool_choice(model_request_parameters),
stream=False,
max_tokens=model_settings.get('max_tokens', UNSET),
temperature=model_settings.get('temperature', UNSET),
top_p=model_settings.get('top_p', 1),
timeout_ms=self._get_timeout_ms(model_settings.get('timeout')),
random_seed=model_settings.get('seed', UNSET),
stop=model_settings.get('stop_sequences', None),
http_headers={'User-Agent': get_user_agent()},
)
except SDKError as e:
if (status_code := e.status_code) >= 400:
raise ModelHTTPError(status_code=status_code, model_name=self.model_name, body=e.body) from e
raise
assert response, 'A unexpected empty response from Mistral.'
return response
async def _stream_completions_create(
self,
messages: list[ModelMessage],
model_settings: MistralModelSettings,
model_request_parameters: ModelRequestParameters,
) -> MistralEventStreamAsync[MistralCompletionEvent]:
"""Create a streaming completion request to the Mistral model."""
response: MistralEventStreamAsync[MistralCompletionEvent] | None
mistral_messages = self._map_messages(messages)
if (
model_request_parameters.output_tools
and model_request_parameters.function_tools
or model_request_parameters.function_tools
):
# Function Calling
response = await self.client.chat.stream_async(
model=str(self._model_name),
messages=mistral_messages,
n=1,
tools=self._map_function_and_output_tools_definition(model_request_parameters) or UNSET,
tool_choice=self._get_tool_choice(model_request_parameters),
temperature=model_settings.get('temperature', UNSET),
top_p=model_settings.get('top_p', 1),
max_tokens=model_settings.get('max_tokens', UNSET),
timeout_ms=self._get_timeout_ms(model_settings.get('timeout')),
presence_penalty=model_settings.get('presence_penalty'),
frequency_penalty=model_settings.get('frequency_penalty'),
stop=model_settings.get('stop_sequences', None),
http_headers={'User-Agent': get_user_agent()},
)
elif model_request_parameters.output_tools:
# Json Mode
parameters_json_schemas = [tool.parameters_json_schema for tool in model_request_parameters.output_tools]
user_output_format_message = self._generate_user_output_format(parameters_json_schemas)
mistral_messages.append(user_output_format_message)
response = await self.client.chat.stream_async(
model=str(self._model_name),
messages=mistral_messages,
response_format={'type': 'json_object'},
stream=True,
http_headers={'User-Agent': get_user_agent()},
)
else:
# Stream Mode
response = await self.client.chat.stream_async(
model=str(self._model_name),
messages=mistral_messages,
stream=True,
http_headers={'User-Agent': get_user_agent()},
)
assert response, 'A unexpected empty response from Mistral.'
return response
def _get_tool_choice(self, model_request_parameters: ModelRequestParameters) -> MistralToolChoiceEnum | None:
"""Get tool choice for the model.
- "auto": Default mode. Model decides if it uses the tool or not.
- "any": Select any tool.
- "none": Prevents tool use.
- "required": Forces tool use.
"""
if not model_request_parameters.function_tools and not model_request_parameters.output_tools:
return None
elif not model_request_parameters.allow_text_output:
return 'required'
else:
return 'auto'
def _map_function_and_output_tools_definition(
self, model_request_parameters: ModelRequestParameters
) -> list[MistralTool] | None:
"""Map function and output tools to MistralTool format.
Returns None if both function_tools and output_tools are empty.
"""
all_tools: list[ToolDefinition] = (
model_request_parameters.function_tools + model_request_parameters.output_tools
)
tools = [
MistralTool(
function=MistralFunction(name=r.name, parameters=r.parameters_json_schema, description=r.description)
)
for r in all_tools
]
return tools if tools else None
def _process_response(self, response: MistralChatCompletionResponse) -> ModelResponse:
"""Process a non-streamed response, and prepare a message to return."""
assert response.choices, 'Unexpected empty response choice.'
if response.created:
timestamp = datetime.fromtimestamp(response.created, tz=timezone.utc)
else:
timestamp = _now_utc()
choice = response.choices[0]
content = choice.message.content
tool_calls = choice.message.tool_calls
parts: list[ModelResponsePart] = []
if text := _map_content(content):
parts.append(TextPart(content=text))
if isinstance(tool_calls, list):
for tool_call in tool_calls:
tool = self._map_mistral_to_pydantic_tool_call(tool_call=tool_call)
parts.append(tool)
return ModelResponse(parts, model_name=response.model, timestamp=timestamp)
async def _process_streamed_response(
self,
output_tools: list[ToolDefinition],
response: MistralEventStreamAsync[MistralCompletionEvent],
) -> StreamedResponse:
"""Process a streamed response, and prepare a streaming response to return."""
peekable_response = _utils.PeekableAsyncStream(response)
first_chunk = await peekable_response.peek()
if isinstance(first_chunk, _utils.Unset):
raise UnexpectedModelBehavior('Streamed response ended without content or tool calls')
if first_chunk.data.created:
timestamp = datetime.fromtimestamp(first_chunk.data.created, tz=timezone.utc)
else:
timestamp = datetime.now(tz=timezone.utc)
return MistralStreamedResponse(
_response=peekable_response,
_model_name=self._model_name,
_timestamp=timestamp,
_output_tools={c.name: c for c in output_tools},
)
@staticmethod
def _map_mistral_to_pydantic_tool_call(tool_call: MistralToolCall) -> ToolCallPart:
"""Maps a MistralToolCall to a ToolCall."""
tool_call_id = tool_call.id or _generate_tool_call_id()
func_call = tool_call.function
return ToolCallPart(func_call.name, func_call.arguments, tool_call_id)
@staticmethod
def _map_tool_call(t: ToolCallPart) -> MistralToolCall:
"""Maps a pydantic-ai ToolCall to a MistralToolCall."""
return MistralToolCall(
id=_utils.guard_tool_call_id(t=t),
type='function',
function=MistralFunctionCall(name=t.tool_name, arguments=t.args),
)
def _generate_user_output_format(self, schemas: list[dict[str, Any]]) -> MistralUserMessage:
"""Get a message with an example of the expected output format."""
examples: list[dict[str, Any]] = []
for schema in schemas:
typed_dict_definition: dict[str, Any] = {}
for key, value in schema.get('properties', {}).items():
typed_dict_definition[key] = self._get_python_type(value)
examples.append(typed_dict_definition)
example_schema = examples[0] if len(examples) == 1 else examples
return MistralUserMessage(content=self.json_mode_schema_prompt.format(schema=example_schema))
@classmethod
def _get_python_type(cls, value: dict[str, Any]) -> str:
"""Return a string representation of the Python type for a single JSON schema property.
This function handles recursion for nested arrays/objects and `anyOf`.
"""
# 1) Handle anyOf first, because it's a different schema structure
if any_of := value.get('anyOf'):
# Simplistic approach: pick the first option in anyOf
# (In reality, you'd possibly want to merge or union types)
return f'Optional[{cls._get_python_type(any_of[0])}]'
# 2) If we have a top-level "type" field
value_type = value.get('type')
if not value_type:
# No explicit type; fallback
return 'Any'
# 3) Direct simple type mapping (string, integer, float, bool, None)
if value_type in SIMPLE_JSON_TYPE_MAPPING and value_type != 'array' and value_type != 'object':
return SIMPLE_JSON_TYPE_MAPPING[value_type]
# 4) Array: Recursively get the item type
if value_type == 'array':
items = value.get('items', {})
return f'list[{cls._get_python_type(items)}]'
# 5) Object: Check for additionalProperties
if value_type == 'object':
additional_properties = value.get('additionalProperties', {})
if isinstance(additional_properties, bool):
return 'bool' # pragma: no cover
additional_properties_type = additional_properties.get('type')
if (
additional_properties_type in SIMPLE_JSON_TYPE_MAPPING
and additional_properties_type != 'array'
and additional_properties_type != 'object'
):
# dict[str, bool/int/float/etc...]
return f'dict[str, {SIMPLE_JSON_TYPE_MAPPING[additional_properties_type]}]'
elif additional_properties_type == 'array':
array_items = additional_properties.get('items', {})
return f'dict[str, list[{cls._get_python_type(array_items)}]]'
elif additional_properties_type == 'object':
# nested dictionary of unknown shape
return 'dict[str, dict[str, Any]]'
else:
# If no additionalProperties type or something else, default to a generic dict
return 'dict[str, Any]'
# 6) Fallback
return 'Any'
@staticmethod
def _get_timeout_ms(timeout: Timeout | float | None) -> int | None:
"""Convert a timeout to milliseconds."""
if timeout is None:
return None
if isinstance(timeout, float):
return int(1000 * timeout)
raise NotImplementedError('Timeout object is not yet supported for MistralModel.')
def _map_user_message(self, message: ModelRequest) -> Iterable[MistralMessages]:
for part in message.parts:
if isinstance(part, SystemPromptPart):
yield MistralSystemMessage(content=part.content)
elif isinstance(part, UserPromptPart):
yield self._map_user_prompt(part)
elif isinstance(part, ToolReturnPart):
yield MistralToolMessage(
tool_call_id=part.tool_call_id,
content=part.model_response_str(),
)
elif isinstance(part, RetryPromptPart):
if part.tool_name is None:
yield MistralUserMessage(content=part.model_response())
else:
yield MistralToolMessage(
tool_call_id=part.tool_call_id,
content=part.model_response(),
)
else:
assert_never(part)
def _map_messages(self, messages: list[ModelMessage]) -> list[MistralMessages]:
"""Just maps a `pydantic_ai.Message` to a `MistralMessage`."""
mistral_messages: list[MistralMessages] = []
for message in messages:
if isinstance(message, ModelRequest):
mistral_messages.extend(self._map_user_message(message))
elif isinstance(message, ModelResponse):
content_chunks: list[MistralContentChunk] = []
tool_calls: list[MistralToolCall] = []
for part in message.parts:
if isinstance(part, TextPart):
content_chunks.append(MistralTextChunk(text=part.content))
elif isinstance(part, ToolCallPart):
tool_calls.append(self._map_tool_call(part))
else:
assert_never(part)
mistral_messages.append(MistralAssistantMessage(content=content_chunks, tool_calls=tool_calls))
else:
assert_never(message)
if instructions := self._get_instructions(messages):
mistral_messages.insert(0, MistralSystemMessage(content=instructions))
# Post-process messages to insert fake assistant message after tool message if followed by user message
# to work around `Unexpected role 'user' after role 'tool'` error.
processed_messages: list[MistralMessages] = []
for i, current_message in enumerate(mistral_messages):
processed_messages.append(current_message)
if isinstance(current_message, MistralToolMessage) and i + 1 < len(mistral_messages):
next_message = mistral_messages[i + 1]
if isinstance(next_message, MistralUserMessage):
# Insert a dummy assistant message
processed_messages.append(MistralAssistantMessage(content=[MistralTextChunk(text='OK')]))
return processed_messages
def _map_user_prompt(self, part: UserPromptPart) -> MistralUserMessage:
content: str | list[MistralContentChunk]
if isinstance(part.content, str):
content = part.content
else:
content = []
for item in part.content:
if isinstance(item, str):
content.append(MistralTextChunk(text=item))
elif isinstance(item, ImageUrl):
content.append(MistralImageURLChunk(image_url=MistralImageURL(url=item.url)))
elif isinstance(item, BinaryContent):
base64_encoded = base64.b64encode(item.data).decode('utf-8')
if item.is_image:
image_url = MistralImageURL(url=f'data:{item.media_type};base64,{base64_encoded}')
content.append(MistralImageURLChunk(image_url=image_url, type='image_url'))
else:
raise RuntimeError('Only image binary content is supported for Mistral.')
elif isinstance(item, DocumentUrl):
raise RuntimeError('DocumentUrl is not supported in Mistral.')
elif isinstance(item, VideoUrl):
raise RuntimeError('VideoUrl is not supported in Mistral.')
else: # pragma: no cover
raise RuntimeError(f'Unsupported content type: {type(item)}')
return MistralUserMessage(content=content)
MistralToolCallId = Union[str, None]
@dataclass
class MistralStreamedResponse(StreamedResponse):
"""Implementation of `StreamedResponse` for Mistral models."""
_model_name: MistralModelName
_response: AsyncIterable[MistralCompletionEvent]
_timestamp: datetime
_output_tools: dict[str, ToolDefinition]
_delta_content: str = field(default='', init=False)
async def _get_event_iterator(self) -> AsyncIterator[ModelResponseStreamEvent]:
chunk: MistralCompletionEvent
async for chunk in self._response:
self._usage += _map_usage(chunk.data)
try:
choice = chunk.data.choices[0]
except IndexError:
continue
# Handle the text part of the response
content = choice.delta.content
text = _map_content(content)
if text:
# Attempt to produce an output tool call from the received text
if self._output_tools:
self._delta_content += text
maybe_tool_call_part = self._try_get_output_tool_from_text(self._delta_content, self._output_tools)
if maybe_tool_call_part:
yield self._parts_manager.handle_tool_call_part(
vendor_part_id='output',
tool_name=maybe_tool_call_part.tool_name,
args=maybe_tool_call_part.args_as_dict(),
tool_call_id=maybe_tool_call_part.tool_call_id,
)
else:
yield self._parts_manager.handle_text_delta(vendor_part_id='content', content=text)
# Handle the explicit tool calls
for index, dtc in enumerate(choice.delta.tool_calls or []):
# It seems that mistral just sends full tool calls, so we just use them directly, rather than building
yield self._parts_manager.handle_tool_call_part(
vendor_part_id=index, tool_name=dtc.function.name, args=dtc.function.arguments, tool_call_id=dtc.id
)
@property
def model_name(self) -> MistralModelName:
"""Get the model name of the response."""
return self._model_name
@property
def timestamp(self) -> datetime:
"""Get the timestamp of the response."""
return self._timestamp
@staticmethod
def _try_get_output_tool_from_text(text: str, output_tools: dict[str, ToolDefinition]) -> ToolCallPart | None:
output_json: dict[str, Any] | None = pydantic_core.from_json(text, allow_partial='trailing-strings')
if output_json:
for output_tool in output_tools.values():
# NOTE: Additional verification to prevent JSON validation to crash
# Ensures required parameters in the JSON schema are respected, especially for stream-based return types.
# Example with BaseModel and required fields.
if not MistralStreamedResponse._validate_required_json_schema(
output_json, output_tool.parameters_json_schema
):
continue
# The following part_id will be thrown away
return ToolCallPart(tool_name=output_tool.name, args=output_json)
@staticmethod
def _validate_required_json_schema(json_dict: dict[str, Any], json_schema: dict[str, Any]) -> bool:
"""Validate that all required parameters in the JSON schema are present in the JSON dictionary."""
required_params = json_schema.get('required', [])
properties = json_schema.get('properties', {})
for param in required_params:
if param not in json_dict:
return False
param_schema = properties.get(param, {})
param_type = param_schema.get('type')
param_items_type = param_schema.get('items', {}).get('type')
if param_type == 'array' and param_items_type:
if not isinstance(json_dict[param], list):
return False
for item in json_dict[param]:
if not isinstance(item, VALID_JSON_TYPE_MAPPING[param_items_type]):
return False
elif param_type and not isinstance(json_dict[param], VALID_JSON_TYPE_MAPPING[param_type]):
return False
if isinstance(json_dict[param], dict) and 'properties' in param_schema:
nested_schema = param_schema
if not MistralStreamedResponse._validate_required_json_schema(json_dict[param], nested_schema):
return False
return True
VALID_JSON_TYPE_MAPPING: dict[str, Any] = {
'string': str,
'integer': int,
'number': float,
'boolean': bool,
'array': list,
'object': dict,
'null': type(None),
}
SIMPLE_JSON_TYPE_MAPPING = {
'string': 'str',
'integer': 'int',
'number': 'float',
'boolean': 'bool',
'array': 'list',
'null': 'None',
}
def _map_usage(response: MistralChatCompletionResponse | MistralCompletionChunk) -> Usage:
"""Maps a Mistral Completion Chunk or Chat Completion Response to a Usage."""
if response.usage:
return Usage(
request_tokens=response.usage.prompt_tokens,
response_tokens=response.usage.completion_tokens,
total_tokens=response.usage.total_tokens,
details=None,
)
else:
return Usage()
def _map_content(content: MistralOptionalNullable[MistralContent]) -> str | None:
"""Maps the delta content from a Mistral Completion Chunk to a string or None."""
output: str | None = None
if isinstance(content, MistralUnset) or not content:
output = None
elif isinstance(content, list):
for chunk in content:
if isinstance(chunk, MistralTextChunk):
output = output or '' + chunk.text
else:
assert False, f'Other data types like (Image, Reference) are not yet supported, got {type(chunk)}'
elif isinstance(content, str):
output = content
# Note: Check len to handle potential mismatch between function calls and responses from the API. (`msg: not the same number of function class and responses`)
if output and len(output) == 0: # pragma: no cover
output = None
return output