-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbm_buffer.py
256 lines (172 loc) · 5.1 KB
/
bm_buffer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import time
import numpy as np
import wgpu
import pygfx as gfx
from pygfx.renderers.wgpu.engine.update import (
ensure_wgpu_object,
update_resource as _update_resource,
)
from pygfx.renderers.wgpu import get_shared
from _benchmark import benchmark, run_all
N = 100_000_000
def update_resource(resource):
_update_resource(resource)
get_shared().device._poll() # Wait for GPU to finish
@benchmark(20)
def upload_buffer_full_naive(canvas):
# Emulate updating a pretty big buffer
data1 = np.zeros((N,), np.uint8)
data2 = np.ones((N,), np.uint8)
buffer = gfx.Buffer(data1)
ensure_wgpu_object(buffer)
update_resource(buffer)
yield
while True:
buffer.data[:] = data2
buffer.update_range()
update_resource(buffer)
yield
@benchmark(20)
def upload_buffer_full_optimized(canvas):
# Emulate updating a pretty big buffer, replacing full data if possible
data1 = np.zeros((N,), np.uint8)
data2 = np.ones((N,), np.uint8)
buffer = gfx.Buffer(data1)
ensure_wgpu_object(buffer)
update_resource(buffer)
yield
while True:
if hasattr(buffer, "set_data"):
buffer.set_data(data2)
buffer.update_full()
else:
buffer.data[:] = data2
buffer.update_range()
update_resource(buffer)
yield
@benchmark(20)
def upload_buffer_full_noncont(canvas):
# Emulate updating a pretty big buffer
data1 = np.zeros((N * 2,), np.uint8)[::2]
data2 = np.ones((N * 2,), np.uint8)[::2]
buffer = gfx.Buffer(data1)
ensure_wgpu_object(buffer)
update_resource(buffer)
yield
while True:
if hasattr(buffer, "set_data"):
buffer.set_data(data1)
else:
buffer.data[:] = data2
buffer.update_range()
update_resource(buffer)
yield
@benchmark(20)
def upload_buffer_half(canvas):
# Emulate updating a pretty big buffer
data1 = np.zeros((N), np.uint8)
data2 = np.ones((N), np.uint8)
buffer = gfx.Buffer(data1)
ensure_wgpu_object(buffer)
update_resource(buffer)
yield
while True:
buffer.data[: N // 2] = data1[: N // 2]
buffer.update_range(0, N // 2)
data1, data2 = data2, data1
update_resource(buffer)
yield
@benchmark(20)
def upload_buffer_two_quarters(canvas):
# Emulate updating a pretty big buffer
data1 = np.zeros((N,), np.uint8)
data2 = np.ones((N,), np.uint8)
buffer = gfx.Buffer(data1)
ensure_wgpu_object(buffer)
update_resource(buffer)
yield
while True:
buffer.data[: N // 4] = data1[: N // 4]
buffer.update_range(0, N // 4)
buffer.data[-N // 4 :] = data1[-N // 4 :]
buffer.update_range(3 * N // 4, N)
data1, data2 = data2, data1
update_resource(buffer)
yield
@benchmark(20)
def upload_buffer_chunk_stripes(canvas):
# Emulate the worst-case stripe scenario
data1 = np.zeros((N,), np.uint8)
data2 = np.ones((N,), np.uint8)
buffer = gfx.Buffer(data1)
ensure_wgpu_object(buffer)
update_resource(buffer)
step = buffer._chunk_size * 2 # every other chunk
yield
while True:
# buffer.data[::n] = data1[::n]
buffer.update_indices(np.arange(0, N, step))
update_resource(buffer)
yield
def upload_buffer_random(n_random):
data1 = np.zeros((N,), np.uint8)
buffer = gfx.Buffer(data1)
ensure_wgpu_object(buffer)
update_resource(buffer)
yield
while True:
ii = np.random.randint(0, N, n_random)
# tex.data[ii] = 1
buffer.update_indices(ii)
update_resource(buffer)
yield
@benchmark(20)
def upload_buffer_random8(canvas):
return upload_buffer_random(8)
@benchmark(20)
def upload_buffer_random16(canvas):
return upload_buffer_random(16)
@benchmark(20)
def upload_buffer_random32(canvas):
return upload_buffer_random(32)
@benchmark(20)
def upload_buffer_random64(canvas):
return upload_buffer_random(64)
@benchmark(20)
def upload_buffer_random128(canvas):
return upload_buffer_random(128)
@benchmark(20)
def upload_buffer_random256(canvas):
return upload_buffer_random(256)
@benchmark(20)
def upload_buffer_random512(canvas):
return upload_buffer_random(512)
@benchmark(20)
def upload_v_random1024(canvas):
return upload_buffer_random(1024)
@benchmark(20)
def upload_buffer_random2048(canvas):
return upload_buffer_random(2048)
@benchmark(20)
def upload_buffer_random4096(canvas):
return upload_buffer_random(4096)
@benchmark(20)
def upload_100_buffers(canvas):
# This emulates updating a bunch of uniform buffers
buffers = []
nbuffers = 100
for i in range(nbuffers):
data = np.zeros((N // nbuffers,), np.uint8)
buffer = gfx.Buffer(data)
buffers.append(buffer)
for buffer in buffers:
ensure_wgpu_object(buffer)
update_resource(buffer)
yield
while True:
for buffer in buffers:
buffer.update_range()
update_resource(buffer)
yield
if __name__ == "__main__":
run_all(globals())