-
Notifications
You must be signed in to change notification settings - Fork 52
/
Copy pathutils.py
50 lines (42 loc) · 1.9 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import SimpleITK as sitk
import numpy as np
def reshape_by_padding_upper_coords(image, new_shape, pad_value=None):
shape = tuple(list(image.shape))
new_shape = tuple(np.max(np.concatenate((shape, new_shape)).reshape((2,len(shape))), axis=0))
if pad_value is None:
if len(shape)==2:
pad_value = image[0,0]
elif len(shape)==3:
pad_value = image[0, 0, 0]
else:
raise ValueError("Image must be either 2 or 3 dimensional")
res = np.ones(list(new_shape), dtype=image.dtype) * pad_value
if len(shape) == 2:
res[0:0+int(shape[0]), 0:0+int(shape[1])] = image
elif len(shape) == 3:
res[0:0+int(shape[0]), 0:0+int(shape[1]), 0:0+int(shape[2])] = image
return res
def random_crop_3D_image_batched(img, crop_size):
if type(crop_size) not in (tuple, list):
crop_size = [crop_size] * (len(img.shape) - 2)
else:
assert len(crop_size) == (len(img.shape) - 2), "If you provide a list/tuple as center crop make sure it has the same len as your data has dims (3d)"
if crop_size[0] < img.shape[2]:
lb_x = np.random.randint(0, img.shape[2] - crop_size[0])
elif crop_size[0] == img.shape[2]:
lb_x = 0
else:
raise ValueError("crop_size[0] must be smaller or equal to the images x dimension")
if crop_size[1] < img.shape[3]:
lb_y = np.random.randint(0, img.shape[3] - crop_size[1])
elif crop_size[1] == img.shape[3]:
lb_y = 0
else:
raise ValueError("crop_size[1] must be smaller or equal to the images y dimension")
if crop_size[2] < img.shape[4]:
lb_z = np.random.randint(0, img.shape[4] - crop_size[2])
elif crop_size[2] == img.shape[4]:
lb_z = 0
else:
raise ValueError("crop_size[2] must be smaller or equal to the images z dimension")
return img[:, :, lb_x:lb_x + crop_size[0], lb_y:lb_y + crop_size[1], lb_z:lb_z + crop_size[2]]