-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathriemann.py
165 lines (121 loc) · 3.97 KB
/
riemann.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
r"""Solve riemann shock tube problem for a general equation of state
using the method of Colella, Glaz, and Ferguson (this is the main
solver used in Castro). Use a two shock approximation, and linearly
interpolation between the head and tail of a rarefaction to treat
rarefactions.
The Riemann problem for the Euler's equation produces 4 states,
separated by the three characteristics (u - cs, u, u + cs):
l_1 t l_2 l_3
\ ^ . /
\ *L | . *R /
\ | . /
\ | . /
L \ | . / R
\ | . /
\ |. /
\|./
----------+----------------> x
l_1 = u - cs eigenvalue
l_2 = u eigenvalue (contact)
l_3 = u + cs eigenvalue
only density jumps across l_2
References:
CG: Colella & Glaz 1985, JCP, 59, 264.
CW: Colella & Woodward 1984, JCP, 54, 174.
Fry: Fryxell et al. 2000, ApJS, 131, 273.
Toro: Toro 1999, ``Riemann Solvers and Numerical Methods for Fluid
Dynamcs: A Practical Introduction, 2nd Ed.'', Springer-Verlag
"""
import numpy as np
URHO = 0
UMX = 1
UENER = 2
QRHO = 0
QU = 1
QP = 2
NVAR = 3
def riemann(q_l, q_r, gamma):
"""solve the Riemann problem given left and right primitive variable
states. We return the flux"""
flux = np.zeros(NVAR)
small_rho = 1.e-10
small_p = 1.e-10
small_u = 1.e-10
rho_l = max(q_l[QRHO], small_rho)
u_l = q_l[QU]
p_l = max(q_l[QP], small_p)
rho_r = max(q_r[QRHO], small_rho)
u_r = q_r[QU]
p_r = max(q_r[QP], small_p)
# wave speeds (Lagrangian sound speed)
wsmall = small_rho * small_u
w_l = max(np.sqrt(abs(gamma*p_l*rho_l)), wsmall)
w_r = max(np.sqrt(abs(gamma*p_r*rho_r)), wsmall)
# construct our guess at pstar and ustar
wwinv = 1.0/(w_l + w_r)
p_star = ((w_r*p_l + w_l*p_r) + w_l*w_r*(u_l - u_r))*wwinv
u_star = ((w_l*u_l + w_r*u_r) + (p_l - p_r))*wwinv
p_star = max(p_star, small_p)
if abs(u_star) < small_u*0.5*(abs(u_l) + abs(u_r)):
u_star = 0.0
if u_star > 0.0:
rho_o = rho_l
u_o = u_l
p_o = p_l
elif u_star < 0:
rho_o = rho_r
u_o = u_r
p_o = p_r
else:
rho_o = 0.5*(rho_l + rho_r)
u_o = 0.5*(u_l + u_r)
p_o = 0.5*(p_l + p_r)
rho_o = max(rho_o, small_rho)
c_o = np.sqrt(abs(gamma*p_o/rho_o))
c_o = max(c_o, small_u)
# compute the rest of the star state
drho = (p_star - p_o)/c_o**2
rho_star = rho_o + drho
rho_star = max(rho_star, small_rho)
c_star = np.sqrt(gamma * p_star/rho_star)
c_star = max(c_star, small_u)
# sample the solution
sgn = np.sign(u_star)
spout = c_o - sgn*u_o
spin = c_star - sgn*u_star
ushock = 0.5*(spin + spout)
if p_star > p_o:
# compression -- we are a shock
spin = ushock
spout = ushock
if spout-spin == 0.0:
cavg = 0.5 * (np.sqrt(abs(gamma*p_l/rho_l)) + np.sqrt(abs(gamma*p_r/rho_r)))
scr = small_u*0.5*cavg
else:
scr = spout - spin
# interpolate for the case we have a rarefaction
frac = 0.5*(1.0 + (spout + spin)/scr)
frac = max(0.0, min(1.0, frac))
rho_int = frac*rho_star + (1.0 - frac)*rho_o
u_int = frac*u_star + (1.0 - frac)*u_o
p_int = frac*p_star + (1.0 - frac)*p_o
# here we are assuming that the rarefaction spans the interface. Correct that now
if spout < 0.0:
rho_int = rho_o
u_int = u_o
p_int = p_o
if spin >= 0.0:
rho_int = rho_star
u_int = u_star
p_int = p_star
# now compute the fluxes
flux[URHO] = rho_int*u_int
flux[UMX] = rho_int*u_int**2 + p_int
flux[UENER] = u_int*(p_int/(gamma - 1.0) + 0.5*rho_int*u_int**2 + p_int)
return flux
if __name__ == "__main__":
q_l = np.array([1.0, 0.0, 1.0])
q_r = np.array([0.125, 0.0, 0.1])
gamma = 1.4
F = riemann(q_l, q_r, gamma)
print(F)