|
1 | 1 |  |
2 | 2 |
|
3 | | -[](https://pypi.python.org/pypi/pytorch_tabular) |
4 | | -[](https://github.com/manujosephv/pytorch_tabular/actions/workflows/testing.yml) |
5 | | -[](https://pytorch-tabular.readthedocs.io/en/latest/) |
6 | | -[](https://results.pre-commit.ci/latest/github/manujosephv/pytorch_tabular/main) |
7 | | -[](https://colab.research.google.com/github/manujosephv/pytorch_tabular/blob/main/docs/tutorials/01-Basic_Usage.ipynb) |
8 | | - |
9 | | - |
10 | | -[](https://zenodo.org/badge/latestdoi/321584367) |
11 | | -[](https://github.com/manujosephv/pytorch_tabular/issues) |
| 3 | +_PyTorch Tabular_ provides a unified interface to deep learning architectures for tabular data. It provides a high-level API and uses [PyTorch Lightning](https://pytorch-lightning.readthedocs.io/) to scale training on GPU or CPU, with automatic logging. |
| 4 | + |
| 5 | +| | **[Documentation](https://pytorch-tabular.readthedocs.io/en/latest/)** · **[Tutorials](https://pytorch-tabular.readthedocs.io/en/latest/tutorials/01-Approaching%20Any%20Tabular%20Problem%20with%20PyTorch%20Tabular/)** · **[Release Notes](https://pytorch-tabular.readthedocs.io/en/latest/history/)** | |
| 6 | +|---|---| |
| 7 | +| **Open Source** | [](https://github.com/pytorch-tabular/pytorch_tabular/blob/master/LICENSE) [](https://gc-os-ai.github.io/) [](https://github.com/manujosephv/pytorch_tabular/issues) | |
| 8 | +| **Tutorials** | [](https://colab.research.google.com/github/manujosephv/pytorch_tabular/blob/main/docs/tutorials/01-Basic_Usage.ipynb) | |
| 9 | +| **Community** | [](https://discord.com/invite/54ACzaFsn7) [](https://www.linkedin.com/company/german-center-for-open-source-ai/) | |
| 10 | +| **CI/CD** | [](https://github.com/pytorch-tabular/pytorch_tabular/actions/workflows/releasing.yml) [](https://pytorch-tabular.readthedocs.io) | |
| 11 | +| **Code** | [](https://pypi.org/project/pytorch-tabular/) [](https://anaconda.org/conda-forge/pytorch-tabular) [](https://www.python.org/) [](https://github.com/psf/black) | |
| 12 | +| **Downloads** |   [)](https://pepy.tech/project/pytorch-tabular) | |
| 13 | +| **Citation** | [](https://zenodo.org/badge/latestdoi/321584367) | |
12 | 14 |
|
13 | 15 | PyTorch Tabular aims to make Deep Learning with Tabular data easy and accessible to real-world cases and research alike. The core principles behind the design of the library are: |
14 | 16 |
|
|
0 commit comments