|
| 1 | +# Copyright (c) Meta Platforms, Inc. and affiliates. |
| 2 | +# All rights reserved. |
| 3 | +# |
| 4 | +# This source code is licensed under the BSD-style license found in the |
| 5 | +# LICENSE file in the root directory of this source tree. |
| 6 | + |
| 7 | +# pyre-unsafe |
| 8 | + |
| 9 | +from typing import Tuple, Union |
| 10 | + |
| 11 | +import torch |
| 12 | +from executorch.backends.test.suite.flow import TestFlow |
| 13 | + |
| 14 | +from executorch.backends.test.suite.operators import ( |
| 15 | + dtype_test, |
| 16 | + operator_test, |
| 17 | + OperatorTest, |
| 18 | +) |
| 19 | + |
| 20 | + |
| 21 | +class Model(torch.nn.Module): |
| 22 | + def __init__( |
| 23 | + self, |
| 24 | + in_channels=3, |
| 25 | + out_channels=6, |
| 26 | + kernel_size: Union[int, Tuple[int, int]] = 3, |
| 27 | + stride: Union[int, Tuple[int, int]] = 1, |
| 28 | + padding: Union[int, Tuple[int, int]] = 0, |
| 29 | + dilation: Union[int, Tuple[int, int]] = 1, |
| 30 | + groups=1, |
| 31 | + bias=True, |
| 32 | + padding_mode="zeros", |
| 33 | + ): |
| 34 | + super().__init__() |
| 35 | + self.conv = torch.nn.Conv2d( |
| 36 | + in_channels=in_channels, |
| 37 | + out_channels=out_channels, |
| 38 | + kernel_size=kernel_size, |
| 39 | + stride=stride, |
| 40 | + padding=padding, |
| 41 | + dilation=dilation, |
| 42 | + groups=groups, |
| 43 | + bias=bias, |
| 44 | + padding_mode=padding_mode, |
| 45 | + ) |
| 46 | + |
| 47 | + def forward(self, x): |
| 48 | + return self.conv(x) |
| 49 | + |
| 50 | + |
| 51 | +@operator_test |
| 52 | +class Conv2d(OperatorTest): |
| 53 | + @dtype_test |
| 54 | + def test_conv2d_dtype(self, flow: TestFlow, dtype) -> None: |
| 55 | + self._test_op( |
| 56 | + Model().to(dtype), |
| 57 | + ((torch.rand(4, 3, 16, 16) * 10).to(dtype),), |
| 58 | + flow, |
| 59 | + ) |
| 60 | + |
| 61 | + def test_conv2d_basic(self, flow: TestFlow) -> None: |
| 62 | + self._test_op( |
| 63 | + Model(), |
| 64 | + (torch.randn(4, 3, 16, 16),), |
| 65 | + flow, |
| 66 | + ) |
| 67 | + |
| 68 | + def test_conv2d_kernel_size(self, flow: TestFlow) -> None: |
| 69 | + self._test_op( |
| 70 | + Model(kernel_size=1), |
| 71 | + (torch.randn(4, 3, 16, 16),), |
| 72 | + flow, |
| 73 | + ) |
| 74 | + self._test_op( |
| 75 | + Model(kernel_size=5), |
| 76 | + (torch.randn(4, 3, 16, 16),), |
| 77 | + flow, |
| 78 | + ) |
| 79 | + self._test_op( |
| 80 | + Model(kernel_size=(3, 5)), |
| 81 | + (torch.randn(4, 3, 16, 16),), |
| 82 | + flow, |
| 83 | + ) |
| 84 | + |
| 85 | + def test_conv2d_stride(self, flow: TestFlow) -> None: |
| 86 | + self._test_op( |
| 87 | + Model(stride=2), |
| 88 | + (torch.randn(4, 3, 16, 16),), |
| 89 | + flow, |
| 90 | + ) |
| 91 | + self._test_op( |
| 92 | + Model(stride=(2, 1)), |
| 93 | + (torch.randn(4, 3, 16, 16),), |
| 94 | + flow, |
| 95 | + ) |
| 96 | + |
| 97 | + def test_conv2d_padding(self, flow: TestFlow) -> None: |
| 98 | + self._test_op( |
| 99 | + Model(padding=1), |
| 100 | + (torch.randn(4, 3, 16, 16),), |
| 101 | + flow, |
| 102 | + ) |
| 103 | + self._test_op( |
| 104 | + Model(padding=(1, 2)), |
| 105 | + (torch.randn(4, 3, 16, 16),), |
| 106 | + flow, |
| 107 | + ) |
| 108 | + |
| 109 | + def test_conv2d_dilation(self, flow: TestFlow) -> None: |
| 110 | + self._test_op( |
| 111 | + Model(dilation=2), |
| 112 | + (torch.randn(4, 3, 16, 16),), |
| 113 | + flow, |
| 114 | + ) |
| 115 | + self._test_op( |
| 116 | + Model(dilation=(2, 1)), |
| 117 | + (torch.randn(4, 3, 16, 16),), |
| 118 | + flow, |
| 119 | + ) |
| 120 | + |
| 121 | + def test_conv2d_groups(self, flow: TestFlow) -> None: |
| 122 | + self._test_op( |
| 123 | + Model(in_channels=6, out_channels=6, groups=3), |
| 124 | + (torch.randn(4, 6, 16, 16),), |
| 125 | + flow, |
| 126 | + ) |
| 127 | + |
| 128 | + def test_conv2d_depthwise(self, flow: TestFlow) -> None: |
| 129 | + self._test_op( |
| 130 | + Model(in_channels=8, out_channels=8, groups=8), |
| 131 | + (torch.randn(4, 8, 16, 16),), |
| 132 | + flow, |
| 133 | + ) |
| 134 | + |
| 135 | + def test_conv2d_no_bias(self, flow: TestFlow) -> None: |
| 136 | + self._test_op( |
| 137 | + Model(bias=False), |
| 138 | + (torch.randn(4, 3, 16, 16),), |
| 139 | + flow, |
| 140 | + ) |
| 141 | + |
| 142 | + def test_conv2d_padding_modes(self, flow: TestFlow) -> None: |
| 143 | + for mode in ["zeros", "reflect", "replicate", "circular"]: |
| 144 | + self._test_op( |
| 145 | + Model(padding=1, padding_mode=mode), |
| 146 | + (torch.randn(4, 3, 16, 16),), |
| 147 | + flow, |
| 148 | + ) |
| 149 | + |
| 150 | + def test_conv2d_channels(self, flow: TestFlow) -> None: |
| 151 | + self._test_op( |
| 152 | + Model(in_channels=1, out_channels=1), |
| 153 | + (torch.randn(4, 1, 16, 16),), |
| 154 | + flow, |
| 155 | + ) |
| 156 | + self._test_op( |
| 157 | + Model(in_channels=5, out_channels=10), |
| 158 | + (torch.randn(4, 5, 16, 16),), |
| 159 | + flow, |
| 160 | + ) |
| 161 | + |
| 162 | + def test_conv2d_different_spatial_dims(self, flow: TestFlow) -> None: |
| 163 | + self._test_op( |
| 164 | + Model(), |
| 165 | + (torch.randn(4, 3, 20, 16),), |
| 166 | + flow, |
| 167 | + ) |
0 commit comments